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| propound a nonlinear generalization of the scalar-field Poisson equation of thé (eri )2~ 1¢ K],
«p, in curved D-dimensional space. It is derivable from the Lagrangian derisity L?—Apcp, with L?
OC—((p’igo’i)D/Z, andp the distribution of sources. Specializing to Euclidean spaces, where the field equation is
V- (|Ve|P 2V )xp, I find thathD is the only conformally invarianfCl) Lagrangian inD dimensions,
containing only first derivatives af, beside the free Lagrangial¥ ¢)?, which underlies the Laplace equation.
When ¢ is coupled to the sources in the above manhéris left as the only Cl Lagrangian. The symmetry is
one’s only recourse in solving this nonlinear theory for some nontrivial configurations. Systems comprising
N point charges are special and afford further application of the symmetry. In spite of the CI, the energy
function for such a system is not invariant under conformal transformations of the charges’ positions. The
anomalous transformation properties of the energy stem from effects of the self-energies of the charges. It
follows from these that the forcés on the chargesg; at positions; must satisfy certain constraints beside the
vanishing of the net force and net moment: for examplg, - F; must equal some given function of the
charges. The constraints totdD (1) (D +2)/2, which tallies with the dimension of the conformal group in
D dimensions. Among other things | use all these to derive exact expressions for the following qudfjities:
The general two-point-charge foro@) The full potential field for two opposite chargesg. (3) The energy
function and the forces in any three-body configuration with zero total ch@g€&he few-body force for some
special configurationg5) The virial theorem for an arbitrary, bound, many-particle system relating the time-
average kinetic energy to the particle charges. | also discuss briefly multiscalar theories, theories with higher
derivatives, and vector- and higher-form-potential theo(i84063-651X97)14007-1

PACS numbseps): 41.20.Cv, 03.56-z, 11.25.Hf

I. INTRODUCTION Equation(1.1) might serve as a model for many other non-
linear phenomena, such as electrodynamics in very strong
It is a well-known and well-used fact that the Poissonfields.
equation,Apxp, for the potentiale produced by sources Here | point out that with the special choice pf(x)
p, describes a conformally invariaCl) theory in two di-  «xP~2 the theory is a natural generalization of thimean
mensions: It is invariant under the angle-preserving coorditwo-dimensional Poisson theory. The resulting nonlinear
nate transformations. In all dimensions it is linear in the fieldtheory is unique in certain regards. Foremost is its conformal
¢, and thus describes a “free(non-self-interactingfield.  jnvariance. This enables one to say much about the theory
Many of the special features of tliz=2 theory stem from  an its solutions—much beyond what is possible for the gen-
its linearity, but many are underpinned by the conformal in-g5) case. The theory seems to be the only one derivable from
variance. The Poisson equatiorDr-2 dimensions is not Cl - 5 ¢ action that contains only first derivatives of the poten-
(while the Laplace equation is; see Sec.JIB tial, with the sourcep coupled directly to the potential, i.e.,
The Poisson equation describes many physical proble ith an interaction Lagrangian of the forpf ().

in linear media such as electrostatics, magnetostatics, steady- In the modified dvnamics discussed as an alternative to
state diffusion, and other potential flows in the presence of y

sources and sinks, and, of course, Newtonian gravity. It caiark rr(;f_;\tter, phenc_;minoll_og_y r(feqwres Jus;thls Cl b(;h; viorin
be generalized to three dimensions in the limit of very smaV ¢| (see[2,3]).

Our results here apply then in the large-distance limit of this
theory.

V- [u([Ve)Vel=p, (1.1 In material media, nonlinearities of the response coeffi-
cient appear at high values ¥ ¢|. Our results might then

to describe, for example, nonlinear media with a respons@PPply in the short-distance limit. So, for example, our results
coefficient(dielectric constant, permeability, diffusion coef- for point charges will be valid when charges are very near
ficient, etc) that is a function of the field strength. An equa- each other, and those for the fields at short distances from the
tion of this type, with different forms ofu(x), has been sources.

studied in different contexts. For example, as an effective- The present theory constitutes an instance of a highly
action approximation to Abelianized QC[], as a modifi- nonlinear theory that can be solved for nontrivial configura-
cation of Newtonian gravity to replace the dark-matter hy-tions due to the symmetry.

pothesis for galactic systenj®,3], and in the context of | shall present two types of results: one concerns solutions
nonlinear composite med{@]. Some of the general proper- for the potential field for various charge distributions ob-
ties of such theories are summarized and extendddlin tained by conformal transformations from highly symmetric
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ones; this | do in Sec. lll, after discussing some general 1

properties of the theory in Sec. II. = Gj [(V)?]P2dPr = —J ped®r. 2.3
The other type of result concerns systems of point b

charges. The dynamics of these is governed by an energshe second relation is an explicit expression for the virial

function that depends on the charges and their positions. |htegraly:

turns out that while the theory is invariant under conformal

transformations, the energy—surprisingly perhaps—is not 5 1 g

invariant under a conformal transformation of the positions VEJ pr-Ved°r=(dG) *GQ|*=1p(Q) (2.4

of the point charges. This can be seen already in the two-

dimensional case, which is exactly solvable, where the enfFd=D/(D—1)], which follows by writingV as a surface

ergy of a system of charges; at positions r; is integral at infinity. The virial—which is shown below to con-

E=X4jqiq;In|r;—r;|. Under a dilatatiorr;—\r; we have trol the response of the configuration’s energy to rescaling—

E—E+In\Z;.;qi9;= E+(1/2)IN\[(Z;q;)®—=ig?], with  can then be written in terms of only the total charge of the

a=2. In the D-dimensional, nonlinear case we do not, in system.

general, have a closed expression for the energy. Still, we While | shall work in Euclidean space with its specific

shall see that the energy transforms under dilatations asonformal transformations, it is useful to formulate the prob-

E—E+KIn\, with K a function of the charges of the same lem for curved space. The covariant form of the action is

form, with a value of the powea that depends o®. The

nontrivial term in the transformation law comes from the D_ 12 D, 1 f 120 i . \D/24D
behavior of the self-energies of the charges under dilatation, ST= fg pedr DapG g7g e 0, T,
including the fact that the self-energy of a charge is logarith- (2.5

mic in its size scale. All this is rather transparent in the linear ) )

two-dimensional case. There is also an appropriate transfogiVing rise to the field equation

mation law of the energy under inversions—the other con- i _

formal transformationgand of course, the energy is invariant [(9%¢i¢) 9" klim=apGp. (2.6
under translations and rotations, which do not affect the self;

O ic.adl its i = -
energies of charggsl discuss all of this in Sec. IV. Some of Above, gij 15 the metric,g Its inverse,g |det(g;)|, and
summation over repeated indices is understood everywhere.

the applications to calculating energies and forces are dis: L . . '
cussed in Sec. V. In Sec. VI, | discuss other field actions fo‘Tfl'he densityp is defined so as to be a coordinate scalar: the

thi H 1/2 D
¢, and demonstrate the uniqueness Bfas a Cl Lagrangian. fcharge within ? vqluma/ is [vg “pd”r. So, for example,
In Sec. VII, | discuss multipotential theories. In Sec. VIII | or a system of point charges atr;
generalize briefly to nonlinear, Cl extensions of Maxwellian
electrodynamics irD>4 dimensions. In the last section | p(N=g"Y2> q:s°(r—r)). 2.7
make brief comments on possible connections with quantum i

field theory. Using usual derivatives instead of covariant ones @)

reads
Il. GENERAL PROPERTIES

9 Y9 g0 )P? 19" \] m=apGp. (2.8)

The field stress tensor is defined as the functional derivative
of the field action with respect to the metric; i.e., under a
small changedg;; in the metric

Via the equation
VA{[(Ve)?]P2 1V o} =apGp (2.1)

a charge distributiop(r) in D-dimensional, Euclidean space

gives rise to a potentiab(r). This field equation is derivable 1 -
from the action 68?:§f g'25g;;P1d°r, (2.9
SD:SD+S E_f pdPr— 1 f [(V ¢)2]P"2dPr giving
f DaDG ' . .
(2.2 , 1 e'e)

i k. \D/2| i _
5 . D . o U PR (g P <P,m<P,m)’ (219
Here,S; is the field actionS;” is the interaction actiorG is
a coupling constant, andvp=2(m)??/I'(D/2) is the which has a vanishing tracéThe metric does not appear in
D-dimensional solid angle, introduced here for conveniencethe interaction part—becausg*?p depends only on the
For G>0, like charges attract, as in gravity; f@<O0 they charges degrees of freedom—which, thus, does not contrib-
repel each other, as in electrostatics. The field equation haswae to P.) The tracelessness results from the conformal in-
unique solution in a volum& bounded by when either variance of the actioS?, as is well known(see below: For
¢ or the normal component §{V ¢)%]°’? 1V ¢ are dictated the Euclidean case the stress tensor becomes
on2 (see, e.g.[3,5)).

Two integral relations satisfied by solutions of the field P=—(DapG) Y Ve/°(1-Dnen), (2.1
equation were derived ib]. The first applies for our class of
theories when the total charge vanishes; it then tells us thawith n=V ¢/|V ¢|.
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In this flat case, the stress tensor gives the force on anlf is customary to use, instead of pure inversions, transfor-

volumeV, bounded by the surfac® on whichp=0 as

Fs—f chpdDr=—f P-ds. (2.12
Vv 3

mations of the formP,=1,T(A)l,, whereT(A) is a trans-
lation by a vectorA, andl, is the inversion at the origin
about a sphere of unit length. These have certain advantages:
they are connected continuously to unity, and they bring the
properties of the conformal group into better relief. | prefer,

(Compare with the expression of the force as a surface intdiowever, to use pure inversions in what follows, as they are

gral in[2].)

A. Conformal coordinate transformations

The crux of this paper is that the above theory is invariant
in

under conformal coordinate transformations

easier to handle: they are self-inverse, and have a simpler
transformation Jacobian.

B. Conformal invariance of the theory

If r—R is a conformal coordinate transformation, our ac-

D-dimensional space. These are the angle-preserving tranéen and the field equation are invariant under replacement of

formationsr — R, for which the metric transforms as

ark  arm

gij_’ﬁgkmﬁ:)\z(r)gija (2.13

o(r) by e(r(R)), of p(r) by 3" 1p(r(R)), and of the metric
gi;(r) by g;;(r(R)) (anddPr by d°R in the action. This can

be checked by direct substitution, but is easier to see as fol-
lows: in a general metric space, a theory is conformally in-
variant if its action is invariant under replacement, every-

corresponding to local rescaling of distances. The Jacobiawhere in the action, of;; by §2(r)gij (and thus ofg'! by

determinant of the transformation is

J=|aR/ar|=\"P(r).

thus ¢ 29", and ofg by £?Pg), and ofp by ¢ ~°p [because of the

=1/2;

factorg in the definition ofp—see Eq(2.7)] It is evident

In a flat (Euclidean (D>2) dimensional space the group from expressior(2.5) for the action, or from the field equa-
of conformal coordinate transformations comprises the rigicion (2.8), that ours is indeed a conformal theory by this

transformationgtranslations, rotations, and reflectionm-
der which the metric does not change, dilatatigrescaling
r—X\~'r, with a constanh, for whichg;; = &;—\?8;;, and
inversions. Under an inversion about a sphere of radius
centered at an arbitrary poing a pointr is transformed to a
point R on the same ray issuing frong, with the geometric
mean of the distances ofandR from r beinga. Explicitly,

2

r—R=rg+ m(l’—ro). (2.149
0
The Euclidean metri@;; then transforms as
—1 —1 a4 |I‘—r0|4
5ij—>Jik 5kajm:|R_r0|45ij: a4 5” y (215)
where
&Ri a2
(5ij_2niﬂj). (216)

T

Here,n is a unit vector in the direction af—r,. The matrix
in brackets has eigenvalues D {1 degenerajeand —1
(nondegeneraje The determinant od;; , in absolute value,
is thus

j

2D |R_ro|2D

a2D

_a
Cr—r

(2.17

|2D:
0

All conformal transformations take spheres into sphéngs
perplanes included as spheres of infinite radius

Since the scalar potential transforms a$r)—>{o(R)
=¢(r(R)), we have V,o—Vgo[r(R)]=(dr/dR)V,¢,
from which it follows that

4

. a
(VR(P)ZZW(VNP)Z-

(2.18

definition. This implies conformal invariance in the above
sense, evident by applying first a conformal coordinate trans-
formation, under whiche(r)—@(r(R)), p(r)—p((R)),
andg;;(r)—J~?Pg;; (r (R)) [see Eq(2.13)]. The action, be-

ing a coordinate scalar, is invariant. Now transform the met-
ric back by multiplying it by the conformal factaf=J2P,
andp by ¢~ P. The action remains invariant by virtue of its
Cl. The net result is that the action is invariant under the
transformation described at the head of this subsection.

It follows from this that if ¢(r) solves the field equation
for the sourcep(r) and metricg;;(r), then¢(R) = ¢(r(R))
solves it for the source(R)=J"(r)p(r(R)), with the same
metric g;;(r(R)). Clearly, equipotential surfaces are trans-
formed into equipotential surfaces. Also, field lines go to
field lines, because they are perpendicular to equipotential
surfaces and angles are preserved in the transformation.
Charges are preserved in the transformation; i.e., the total
charge in a certain volume is the same as the transformed
charge in the image of that volume.

The tracelesness of the stress tensor follows by employing
Eq. (2.9 with 5SfD=O for 8g;;=€(r)g;j , with € an arbitrary
(infinitesima) function.

The application of such conformal invariance is standard
in the linear, two-dimensional cas@n electrostatics, in
potential-flow problems, etc.In D dimensions such an ap-
plication has special value because the symmetry is our only
recourse in solving some of the problems in this strongly
nonlinear theory, as | do in Secs. IlI-V.

The covariant Laplacéree) action, fg*?g" ¢ ;¢ ;d°r, is
not Cl in the above sense, but can be made so by adding to
the above action a term proportionalRe, with R the scalar
curvature, and taking to have nonzero dimension, so that it
transforms agp—\ (P2~ V¢ (see e.g.[6]). The Euclidean
Laplace theory thus becomes CIl with of dimension
D/2—1 (as the term with the curvature vanishelsut then
the CI of the interaction ternig'?p ¢ is lost. What is special
about our theory, and what leads to the applications below, is
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the fact that it is a CI theory in the presence of sources. @ Yo-1)

Hereafter | confine myself to the Euclidean case. In E:[QDE(Z)/Z] O=h, (3.3
curved spaces that are conformally flat, such as maximally
symmetric spaces, conformal invariance implies the exiswhereZ. (z) is the total surface density to the Iéémallz) of
tence of coordinates in which the theory takes the Euclideaz minus that to its right.

form, with g;; replaced bys;; everywhere. These solutions, and others, may be used to generate new
ones by applying conformal transformations to the corre-
C. Asymptotic behavior of the potential sponding charge configuration. Some examples follow.
If the sourcesg are contained within a finite volume, and A. Two opposite point charges*q at r, and r,

sum up to a total charg®+ 0, the field becomes radial at
infinity, and, applying Gauss’s theorem to the field equatio
for a sphere of a large radius, we find asymptotically

Start with a point chargg>0 atr, and a spherical shell
nevenly charged with charge q, centered at,, and having a
very large radiuginfinite in the limit). Upon inversion about
_ UD-1), —1 a sphere of radiua=|r,—r,| centered at, the large spheri-
Ve=s(QG)|GQI"® Hrn,. (219 cal shell is transform|ed intc|> a point chargey atr,, and the
_ o _ _ chargeq stays atr,. The potential for the original, spheri-
Here s(x)=sgn(), and n, is an out-pointing, radial unit cqjly symmetric system ig(r)=q¥®~Vin|r —r,| inside the
vector. The potential is then logarithmic for any dimension.gpherical shell, an=0 outside. It transforms into
WhenQ=0, the asymptotic behavior @f is determined by
higher multipoles. Typically, a dipole potential dominates
asymptotically, and has the formcz/r? (see below with
z the axis along the dipole. Outside a spherical distribution of

zero total charge the field vanishes. (after subtraction of the constagt'®~in|r,—r|); this ap-
plies everywhere. Interestingly, this potential is just the sum

) . of the potentials of the two individual charges. This happens
D. Scaling properties to be the case only for two opposite charges. It holds neither
The field equation enjoys a two-parameter family of scal-for two charges that are not opposite, nor for more then two
ing invariances: Ifo(r) solves the equation for a source charges.
p(r), then, for any two constantsa and b,
e(r)=a"Ya/b|%(br) solves it for p(r)=ap(br), where _ , N _
d=D/(D—1). Whenb®=a>0, so that the total charge re- . Asymptotically, atr>/", where/" is the dipole separa-
mains the same, the scaled potentiab{s) = ¢(br). tion, the potential in Eq(3.4) becomes
It follows then that the potential, the electric field, the z
forces, etc. scale simply with charge: f—ap, then QD*—QMD*D/r—z, (3.5
o—s(a)|alYP Ve, and forces(which scale likeqV ¢)
F—|a|9F. These quantities also scale with system size. ~ wherez is the dipole axigpositive charge to the positive-
side. This is the potential for a pure dipole of strength
IIl. EXACT SOLUTIONS FOR THE FIELD q/P1. It describes the field everywhere in the limit-0
_ _ _ _ with g/ (°~Y constant.(For D>2, a standard dipole with
Only few charge configurations with exact solutions are, . andq,/ finite does not contribute to the dipole field,
known for the general case with an arbitrary formudi) in  qye to self-screening effectsThe pure dipole potential is a
Eq. (1.1 [S]. In particular, there is a closed-form solution for \acyum solution of the field equation that is obtained from
any configuration with one of th® one-dimensional sym-  gnother vacuum solution: a constant-gradient field; the latter
metries: plane-parallel, cylindrical. . ,spherical: by apply- a5 the potentiapez, which transforms inta/r.
ing Gauss'’s theorem we get for the present theory The dipole field has a field strength¥ ¢|or ~2, that de-

pends only orr—not on the angular coordinates. This is a
well-noticed property of the dipole field in two dimensions.
Here it follows directly from the transformation la®.18

for |V |, and the fact that the dipole field is obtained by

hereR is the only coordinate on whicl dependsq is the inversion fromaconstant-grgdignt field. __
w ! y ! which dep 4! For a bounded density distribution of a vanishing total

accumulated charge, arak=0 for the plane-paraliel case, charge the asymptotic behavior of the field is, generically,

s=1 for the cylindrical case, etc. For a spherical system h . X 2
s=D-1, and we have dominated by a dipole fieldz/r<. | have not been able to

expressA as a functional of the density distribution.

[r—=r4]

‘P(r):ql/(D_l)ln|r_r2|

(3.9

B. The pure-dipole field

de 1
(D-1)p-s/(D—1)
dR“[Q(R)] R , (3.1

14D-1)
do_[Q(I"°Y -

dr r If, in the above example, we take the charged spherical
shell to have a finite radius, we end up with a point charge
whereQ(r) is the accumulated charge at spherical radius q in the presence of a grounded sphéae the potential on
(here and in the rest of the section | USe=1). In the plane- the original sphere vanishesBy a proper choice of the in-
parallel case version radius and center, the image point charge falls inside,

C. Point charge in the presence of a grounded sphere
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or outside, the image sphere. In the first case the potentigharges, and centered mtAll the charges are transformed
inside the sphere is that of two opposite charges, and vannto the small sphere, and the goes to infinity. The
ishes outside; the tables are turned when the charge fallssymptotic field of the new configuration is related to the
outside the sphere. The charge distribution on the groundefield nearr in the original configuration. IV o(r)#0, the

sphere is then easily determined. image asymptotic field is dominated by a dipole term. In an
opposite example, look at the field near the midpoint be-
D. Two oppositely charged spheres tween two equal point charges, whé¥ep=0; the inverted

. . configuration is a quadropole, with a point chargeq
More generally, starting from two oppositely chargedf,nieq by two symmetric charges the asymptotic field
(%) concentric sphereor which the potential is constant g reases faster than a dipole field. | have not been able to
in the innermost and in the outermost regions, and igjetermine this asymptotic behavior.
qY®~Dinr in between we get the potential field of two
oppositely charged, equipotential spheres of any size, eithg(, pmaNy POINT CHARGES—GENERAL CONSTRAINTS
nested or detached. When the spheres are nested, the poten-
tial in the inner and outer parts is still constant; in between it N-point-charge configurations—comprising bodies whose
is of the form(3.4). When the spheres are detached the po&xtent i; much smaller than their separations—afford further
tential is constant inside the spheres, and is of the @ application of the conformal symmetry. Take then a system
outside. made ofN point chargesy;, ..., gy atrq, ... Iy, respec-
Starting with two parallel hyperplanes charged with alively. The informf_;ltion on the dynamics of the system is
constant surface density Y, (between whichV ¢ is con- encapsuled n the energy fgngtlon
stany, and inverting about a point half-way between theE(rl' NG - Gn). The_ energy of a cha_rg_e _dlstrlbu-
planes, we obtain two oppositely charged, tangent spheregon may be taken as-S. This converges at infinity only

The potential vanishes inside the spheres; outside we have %hen the total charge vanishes. We can still use it when

exact dipole potential. The charge distribution on eact} #0, provided only its changes under change of configura-

sphere—straightforwardly calculated—diverges at the Origllnion are needed: only the energies of configurations with the
and together the charges give a dipole of finite strength. same total charge can be comparsde[2]). Changes irE

may be calculated as changes-its. An infinitesimal change
dp in the charge distribution with no net change in the total
charge (8pdPr=0) thus produces a chander8pd®r in
Since equipotential surfaces remain so when transformedhe energy §p also induces an increment ¢f but the field
and since spheres go to spheres, the equipotential surfacesdguation implies that this does not contribute to the incre-
all the above examples are sphefalstangent in the case of ment of the action The N-point-charge energy,
a point dipole. The field lines are all circles, being images of E(rq, ... ry) (suppressing thg variables, is a special case
circles or straight lines. For example, for a finite-separatiorgiving the relative energies of tHe point charges in differ-
dipole the field lines are all the circles going through the twoent configurations: we are only interested in compaitihg
charges. values as the charges are moved rigidly to different posi-
There are constraints on the field that can be deducetions. The energy also divergél®garithmically) near point
even when the full field cannot be calculated. As an exampleharges, but these divergences can be subtracted as self-
consider a charge distribution that lies on a cir¢ith  energies. |, in fact, treat point charges as small but finite
Q=0). The fieldV ¢ at any pointr must be tangent to any bodies, and need not be concerned with such divergences.

E. Some general comments on potential fields

sphere, of any dimension, containingand the circle(be- The force on theth charge is given by

cause the sphere can be transformed into a plane by inversion

about a point on jt This provides some information on the F_ JE 4.1
i - .

field of any three-point charge configuration, or on that of a
square quadropole.

Other vacuum solutions of the field equation can bel now derive an expression for a virial integral defined in Eq.
formed by starting from the known, exact solutions of one-(2.4) that involves only the positions of the charges and the
dimensional symmetryuniformly charged, one-dimensional net forces on them, but is oblivious to internal forces and
wire, two-dimensional plane, ejc.As an example take a structure (the above virial involves integration inside the
one-dimensional wire in three dimensions with a constancharges To this end consider the contributiaf of theith
line densitys. Working in cylindrical coordinate®,z we ~ body occupying the small volume;: V=], pr-Ved®r.
write the potential ag = (8¢)"R"2 Inverting about a point  Write for r within the body,r =r;+h, wherer; is the center

off the wire will give the field for certain ring-plus-point- of chargeh is small and will be taken to 0 in the limit. We
charge configurations. Inverting about a point on the wirecan then write

gives a configuration whose vacuum solution is
«RYY(R?+2%) "2, This corresponds to a charge density

a(z)*z2 (and there appears an infinite opposite charge at
the origin to compensate the infinite charge of the yire

For a general charge distribution, the field near an arbiwhereF; is the net force on the body. The second term in Eqg.
trary pointr, away from charges, is conformally related to an(4.2) does not necessarily vanish in the lirhit>0, because
asymptotic field: invert about a very small sphere devoid ofV ¢ inside the body diverges in this limit. L&t¢;(r) be the

_(?_ri'

Vi=—ri-Fi+f ph-V ¢dPh, 4.2

Uj
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field produced by the body when it is the only one present.
Write Vo(r) =V ¢;(r) + V «(r), wherek is the increment in E(Px)—E(P)ZW\f p()r-Ved®r=Vp(Q)In\,
the potential due to the presence of the other bodies in the 4.7
system.(Because of the nonlinearity is not just the field
produced by all the other charge#n the limit h—0, V ¢; whereQ is the total charge, and | have used Ej4) for the
diverges like|h| 7 (from the scaling propertig¢dut V « re-  virial integral. This is the result that underlies all our findings
mains finite. Thus{, ph- V «d®h vanishes in the limit, and below. It says that the virial integral is the single system
we are left Withfv,plh~V(pidDh. This is just the virial de- Parameter that determines the variations in energy under
: scaling transformations.
What is the change it when the charges are moved
from positionsr; to positions\r;? This can be achieved in
two steps: first apply a space dilatation to the charge distri-
f ph-VedPh—Vp(q)=(dG) }|Gql? (4.3  bution. The centers of charge are then moved to the new
vi positions. But also, the charges themsel{iaken as very
Putting all the above together we finally get an expressiorsmall but finite bodiessare dilated by the same factor; this is
for the reduced virial more than we want, as we need to move the changédly
to the new positions. After this first step we have from Eq.

fined for theith body when it is isolated. Thus, from Eq.
(2.4),

(4.7
Vi==2 r-Fi=1(Q)~ 2 Vo(a) _
' ' E(NFy, .. AT =E(ry, ... 1)+ Vp(Q)INN, (4.8
=(dG)_1|G|d< |Q|d—2 |Qi|d>- (44 whereE is the energy of the dilated charges at their new
configuration.

Note that the limit of a point charge is gotten from a finite  In the second step we dilate each charge separately by the
charge distributionp(h) by taking the limit \—0 of inverse factor to brm.g the configuration to the desired one.
A~ Pp(h/)); this has enabled us to take the limit of The.er?ergy change m_the second step can be calculated in
fviph-VKdDh to 0. Pointlike bodies of finite, higher multi- the limit of very small size for the charges. Itis then the sum

. , ... of changes due to separate dilation of the individual charges.
\?v(zi?fglpe)?({:ﬁgluea(fjcr)(rjzogljiyin?)gﬁa%rllgo;rll)o(IaDger‘:rqgﬁds ]iinnif[zls This cannot be done when the bodies are not much smaller

) o - ] than their separations, and, as before, does not apply if the
in the limit). Our ensuing results are not valid for such bod-p4dies have finite higher multipoles. Using Hd.7) again

1es. for the individual charges vyields the change
AE=—In\ZVp(q;). Putting the two together we get Eg.
A. Scaling behavior of the energy function (4.6). The nontrivial transformation properties of the energy
Expression(4.4) implies then thaE,=E(\ry, ... Ar,)  function under;—Ar; (even whenQ=0) thus have to do
satisfies with the transformation of the self-energies of the point
charges.
JEy 4 Invariance under translations implies tHatmust be a
K:Z AT Fi(an)] function of only differences of r;, such that
E(ri+a)=E(r;). The derivative of this with respect ta

-1 gives

VD(Q>—Z Vo(ai) |- (4.5

_ _ F=> F=0. 4.9
Integrating overA between 1 and\ we get an important EI ' “9

homogeneity property dE(rq, ... In):
Similarly, invariance under rotations implies tHatdepends
E(\ry, ... Ary) only on scalars, and that the total moment on the system
must vanish:

=E(rq,...ry)+ In\. (4.6

Vo(Q)— 2 Vo(ai) .
! M=, rioF—For=0 (4.10

I shall now derive this transformation law &fin a different
way, which illuminates better its origin, and which will be of
further use below. This is based on the invariance of the
theory under space dilatations—a fact that also underlies the What does inversion invariance tell us about hé&w
derivation of Eq.(4.4). changes under inversions, namely, when mowingigidly
Consider first the change in the energy of an arbitraryfrom r; to R; according to Eq(2.14? We saw above that if
charge  distribution p(r) under a dilatation: the inversion is not to produce a new charge at the center we
p(N)—pxr(r)=N"Pp(r/\). In light of the scaling laws de- must start with a total charg®=0; whenQ#0 we may
scribed in Sec. 11D, o(r)—¢,\(r)=¢(r/\). Integrating annul it by putting a charge- Q at infinity. Then, from con-
SEI 6N = [ ¢, (dpy 19N)dPr between 1 and gives formal invariance, the energ¥action is conserved under an

B. Behavior of the energy under inversions
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inversion transformation of the charge distribution. As in thetions, respectively, then, from E¢4.11), and choosing the
case of dilatations, such a transformation does not just moverigin at the inversion pointrg=0)

the charges to their new positions, it also transforms their

inner structure, but how? When the charges are of very small [, _ _ JE(Ry, ... Ry) _dri F 420 ( .)&
size their shape change is determined by the first derivatives P IR SR ! Dtdi R
dR/dr [Eq.(2.16 with r andR interchangedl This describes (4.19
a reflection about a hyperplane perpendiculantthrough
the body's center, and a dilatation by a factor V. N-POINT CHARGE CONFIGURATIONS—
a2/|ri—ro|2= Rizolaz, with R;g=R;—rq. As before, bringing SOME APPLICATIONS
the charges back to their original size changes the total en-
ergy, which leads to Energy functions and forces for certaM+point charge
configurations can be calculated with the use of the results in
E(Ry, ... ,Ry) the previous section.
RA A. The two-body system
:E(rl,...,rN)_Z VD(ql)In(a_lzo) (41]) vy .
i The forceF(q;,q,,7) between two point chargeg and

_ ) _ ) ) ) 0,. a distance”” apart F is positive for attractioncan be
Agaln, the fact thakE is not invariant under inversion of the obtained from expressiom_4) for the reduced virial: here
positions results from the effect on the self-energy of ther, = — F,=F, and the vanishing of the moment implies that

charges. o _ F points from one charge to the other, so that F/, and
The derivatives of Eq(4.11) with respect toa® and t0 e can write

ro, at fixedR;, give sum relations for the forces. The first

gives Eq.(4.4) for the reduced virial, again. The second s(G)
gives the vector sum relation F=——[Vo(A1+02) = Vb(d1) = Vb(q2)]
2 2 S(G) 4 ajd-1 d d d
—a EI: Fi+§i: riOFi_ZEi (Fio-Fi)Trio :7d IG|® (a1 + a2l “—[as/®—[a2®) (5.9
D [d=D/(D—1)]. This result was derived if] for the three-
+2 i Vo(di)Tio dimensional case in a roundabout manfieor D=2 expres-
sion (5.1) reduces to the standard two-dimensional linear-
=0. (4.12  medium resultF=Gaq,q,//.] For example, for two equal
_ _ _ charges g;=0,=q, F=2s(G)/ *d~G|* ¥q|?2""*
Equation(4.12 holds for the forced to which the point 1), For opposite charges, q;=-0,=q,

charges are subject when gt for all values ofa andr,. F=-2s(G)/ 'd~!G|9 !q|9, also to be gotten from the
Separating the dependence oandr, this equation can be  force-transformation law4.15 starting with one charge at
written as infinity, and henceé* =0.
. The energy function in the two-body case is
| —a?F+r3(1—2n@n)-F+2Vro+2Mry=0,
(4.13 E(r1.r2,01,02)=B1dn[r1—ry, (5.2

whereV=3[r;-Fi—Vp(a;)], n=ro/|ro|, and where

Bij=Vo(Qi+d;)—Vp(di) = Vp(d;)- (5.3
1= r2F =22, (r-F)ri+22 Vo(ar;. (4.14

B. The three-body system with vanishing total charge

For Eq.(4.13 to hold for anyr, anda we must have sepa- Consider three chargeg atr;, with q;+q,+0g3=0. Per-
rately F=0, M=0, V=0, and the new sum relatidn=0.  form an inversion with one of the’s as center, say;. Then,
The number of such relations totals g3 is transformed to infinity, andy;, are transformed to
D+D(D—-1)/2+1+D=(D+1)(D+2)/2—and tallies R;,. The force onq;, say, can be calculated in the new
with the dimension of the conformal group. The first threeconfiguration from the two-body force formula E.1).
relations were derived above from transformation propertiegrom this the force=, in the original three-body configura-
of E under translations, rotations, and dilatations, respection is calculated by employing the force-transformation law
tively. Now we see that they all follow solely from the trans- Eq. (4.15 to obtain
formation properties under inversions. This need not be sur-
prising: locally, all the former transformations can be
obtained from combinations of inversions. Any set of points
in a finite volume can be translated, rotated, or dilated by
using a succession of inversions alone. (This could also be derived from the above constraints on the
How do the forces on the charges transform under inverforcesF=0, M=0, V=0, I=0.) Interestingly, the force
sion? If F; and F* are the forces in the old and new posi- is the sum of the two forces that would have been exerted by

lo—ry l3—ra
Fi=Bio—o—t+tB1z—2—. (5.4
P s
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g, andqs separately, the nonlinearity notwithstanding. Inte-the center—equivalent in the sense that each of the points
grating Eq.(5.4) overr, we get the explicit form of the r; can be interchanged with any other by an element of the
three-body energy functiotfor the zero-total-charge cgse  symmetry group of the systeni: a rotation, a reflection
about the center, a reflection about some hyperplane through
E(rl,rz,r3)=In[rlezrf§3rf§3] (5.5  the center, or combinations thereof, that is also a symmetry
of the system. Examples are the corners of a rectangular
hyperbox, the vertices of any perfect solid of dimendbor
less (such as a perfect polygon, any hypercube,)ette
| now derive the analogue of the standard virial theoremyertices of polygonal prisms of different types, etc. Clearly,
(Ew=—(Ep)/2, relating the mean kinetic energy and meanthe q charges are then all at the same distance from the
potential energy of ai-body system held together by New- center, call itr. Also, they are subject to equivalent forces
tonian gravity in three dimensions. Consider a bound systerg, ; to wit, each of theF;’s can be transformed to any other
made of any number of point charges, of massesm;, by an element of the symmetry group. In particular, the ra-
moving under the sole influence of tigefield they produce dial components of these forces-); are all equal, because
(other forces may act inside each body to hold it together scalars are invariant under the point gro(fthe force on the
The center-of-mass acceleration of each bagyF;/m;, charge at the center vanishe$his common value can be
with the F; satisfying Eq.(4.4). Now deduced from Eq4.4) (the symmetry automatically ensures

1 d thatF=0, M=0, andl=0):
—Z ri-Fi=—Z miri'i;i:_z_z[E mM}

C. The virial theorem

1
For=-— H[VD(QO+ na)—Vo(do) 1+ Vo(q). (5.9
+2 mir2. (5.6

When the forces are radial—as when the point are the verti-
ces of a perfect solid—the full force is obtained since in this
The first term vanishes in the stationary céseits long-time  caseF.r=—Fr (F is positive wherF acts towards the cen-
average vanishes for a general bound systahe second ter).

term equals twice the kinetic enerdg=M(V?)/2, where In the limit n—,nq— Q, Eq. (5.9 gives the force on the

M is the total mass of the system, afd?) is the mean elements of a spherical shell of any dimension smaller than
square velocity. Together with EG#.4) this finally gives the D (e.g., a ring having radiug, total chargeQ, and a charge

desired virial theorem qo at its center. The force-per-unit-charge on the shell is
1
2= M(VE)=Vp(Q)— 2 Vo(a) F= o WAt Q- Voao)]. (5.0
:(dG)—1|G|d( Q- |Qi|d), (5.7  Additional results are described in Appendix A.
i

by which the mean-square velocity depends only on the E. Point charges in the presence of conducting boundaries

charges. This is exact for a stationary system; for a general When (equipotential bodies of infinite conductivity are
bound system the long-time average of the left-hand side hgzresent, the full conformal symmetry enjoyed by the
to be taken. N-charge problem is destroyedhe boundaries remain in
This relation has been used to estimate the mass of largglace when applying the transformation to the charg8s,
scale, cosmological, galaxy filaments, which are approxifor example, homogeneity is always lost, and the total force
mately two-dimensional Newtonian systefi§. It has also now does not vanish in general; rotational symmetry sbout
been used to determine the masses of roundish galaxies, &am arbitrary center is lost, and so the total moment does not
the modified dynamics, from their observed velocity disper-vanish, etc. Some symmetry may, however, be left, in which
sions, when typical accelerations in them are very [e@e case the corresponding identities are still valid. If the ar-
[7,9] and references thergirin these cases, whegg are the  rangement of conductors is invariant under translations in a
constituent masses, and whéte 1, =|q;|? can be neglected certain direction, the component of the total force on the
as it is smaller thanQ|?=M?2 by a factor~N~Y®~1_|n  charges in this direction vanishes. If the conductors are
the limit N— o spherically symmetric about some center, the total moment
on the charges with respect to this center vanishes, and so on.
An interesting example involves boundaries that are invari-
ant to rescaling about a certain poigiaken at the origin
This happens when for every pointon the boundaryr is
also on the boundary for evety=0—the boundary is an
arbitrary-cross-section cori@ncluding a hyperplane, a cor-
The force on bodies in some symmetric configurationsner, etc). In this case, expressigd.4) for the reduced virial
can be calculated from expressi@h4): consider a configu- holds with respect to the origifbut| =0 does nok Q now is
ration comprising a chargg, at the center, anch equal the total charge including that on the conductors. When the
chargesgq, at positions; that are equivalent with respect to conductors are grounded they automatically take up a charge

(V)= %(GM)MD’”. (5.9

D. Symmetric configurations
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that makesQ=0. Thus, for example, the force on a single  Consider, hereafter, the Euclidean version of the action
chargeq, in the presence of an arbitrary, grounded, conic(whereg;; is put tod;;, andD to 7). As stated above, scale

conductor is always subject to a forEe satisfying invariance does not ensure full Cl. The quadratic
Lagrangians—leading to linear field equations—withof
F-r=Vp(q). (5.1)  zero scaling dimensiob= eAP"2p (for evenD) are CI. The

) ) ) nonlinear actions withg of zero scaling dimensions are
This can be extended to conductors in the shapes of disks SFobably not. In fact, | have not been able to find any that is

spherical caps, as they can be transformed into half planes Qyithout having a general proof that nong. ior example, |
Inversions. have shown that all the Lagrangians, in e@mlimensions,
of the form

VI. OTHER CONFORMAL ACTIONS?
L=[(Ve)*I"(Ag), (6.3
Rotation invariance dictates that an action containing only

first derivatives ofe is a function of ¥ ¢)?, and scale in- Wwith m=D/2—k, and withk=1 for D=4, k=2 for D>4,
variance further requires that it be of the form ork=3 for D=2k, which are scale invariant, are not Cl.
Spocf[(V(p)z]pdDr_ By themselves, all such actions are in- The homogeneity conditiort6.2) implies that the field
variant under the scale transformation equation necessarily has a vacuum, spherically symmetric
o(N)— @(r)=\%@(Ar), with a=(D/2p)—1, namely, with  Solution of the forme=Alnr. The Euler-Lagrange equation
¢ having conformal dimensiow. If it is to be fully CI, S°  can be written in the forn#;J;=p, whereJ; is a vector that
must also be invariant under inversion at the origin:iS @ function of the first R—1 derivatives ofe, with the

o(1)— o(r) = (alr)2%e(a2r/r2). This can be shown not to homogeneity propertjeasily derived from Eq(6.2)]

be .the case unless_ eitgpttl (the Ii_near casg or p= D/2,. J(Ndg, ..  NETLgK1) =\D- 1Y (90, . 97K 1),
which gives our actior®; . To see this note that starting with (6.4)
pocr ~(P=2p)/(2p=1) which is the only spherical vacuum so- . _

lution of the theory(besideg = const), the corresponding  Whene depends only on the radial coordinateJ has only
is not a solution, unlesp=1, D/2. Similarly, if we start &1 r_(<:Do_rrl1)ponent, and, from Eq(6.4), for ¢=Alnr,
with oz, which is a vacuum solution for a8®, the corre-  Jr=' 7(0711)(A)' ,_Since i the spherical ~ case
sponding is not, unlesp=1, D/2. aJi=r d,[r°J,], clearlyp=Alnr is a solution. The

Field theory lore has it that scale-invariant theories tend tocoefﬂmentA is determined via the Gauss theoreA)

be ClI, but this is not a theorefsee, e.g10], and references “Q, wher_eQ ";’ ctjhe total ctLlar%e_aththe center.Lifis ??jmo—
therein. The above nonlinear theories constitute counter9€NeoUs Inp of degreeg, thenJ is homogeneous of degree
examples. B—1 in ¢, and then the coefficienA is given by A

. . . . . U(B-1)
For the interaction action to be invariant we negdo *sgn@Q)|Q C _ . . .
transform according tap(r)— ¢(R(r)), since pdPr is in- The purely logarithmic potential outside a single spherical

variant; i.e.,¢ is then of conformal dimension zero. As ex- body is, however, yalid for only very s'pec.ific density runs.
plained in Sec. Il B, the Poisson action in>2 is not ClI When the_ Lagranglan depends on derivatives up tok_the

because for the free action to be invariamnthas to have the generic, spherically Sym’_“e”'c’ vacuum solution is char-
dimensionD/2— 1. We are thus left witts® as the only ClI acterized by R constants, which are determined by the exact
action containing only first derivatives in the field part. density run in the central body. In general, the potential di-

Consider now actions with a field part containing higherverges _at large as a power inr. The notion O.f a point
derivatives written for curved space charge is thus not useful as the external solution does not

depend only on the total charge. We cannot even speak of

“the field of a point charge” as this is not well defined. For

sz_f g¥(g", Do, . .. ,Dkgo)le’—f gY%pdPr. e>§ample, thD%quadratic t_heory w.ith of zero ding)t/aznsions,
with Lx A "o+ Ape, with the field equatiomA~'“pxp,

6.0 hasD independent spherically symmetric vacuum solutions
The field Lagrangiai. depends on covariant derivatives of of the form=constIm,r=*, with «=24,,... ,D=2.
o @i ....i,lsmsk (collectively designate®™¢), and
. "1 . m . . . VII. MULTIPOTENTIAL THEORIES
is a coordinate scalar. Scale invariance alone is tantamount
to the homogeneity requirement The above theory is straightforwardly extended to de-
scribe K (coupled scalar potentialsg,, which couple to
L(g! A Deg, ... \DKe)=\PL(g", D¢, ... D o). K types of charges with densitigs, (a=1, ... K). The
(6.2 action is
This is because coordinate invariance dictates that every de- 1
rivative in L is contracted with another by o . As ¢ has S= _J ; Pagad’r = Ej Llxy, .- x)d?r,
zero dimension, under dilatations—\ ~r, anmth covari- (7.2

ant derivative is multiplied byA™, which is the same as
multiplying g" by A2, and conformal invariance tells us that with xa=(V¢,)? andG=1. Conformal invariance is now
L(\%g", ...)=APL(d", ...). equivalent to homogeneity af:
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L(Ax2)=\P2L(x,). (7.2 Z.pa¢a invariany. This means that must be a function of

) . 2,Xa, and the required homogeneity then dictates that
(One could actually generalize further by taking

Xab=V @4+ V ¢, as variables, but | keep to the simpler foym. 2 D/2
TheK field equations are L=5 Ea: Xa (7.9
V-lua(xq, - )Vea]=appa, (7.3 (the constant in front is chosen to match the single-field
case.

with u,=dL/dx,, 1<a<K. The spherical vacuum solution

for a system with total charges, is Equation(7.5 can now be solved to give the asymptotic

charges as

¢a=5(0a)Qa" Inr, (7.4 Qa=|ga/° 1~ ®2, (7.10

with Qa=0, giving x,=(Qa)*®~r™?% s(0.)Qa may be  where g=(=,q%)"2 is the root mean square over all the
viewed as the asymptotically observed charges. They are dgnarge types of a body. The virial now takes the single-field
termined from the actual charges, =/ pa, as follows: In- form " only with the system’s single charge replaced by its

wa(Xq, ... )de,/dr=g,r P71 and making use of the ho-

mogeneity property of thew, (derived from that ofl): VIIl. VECTOR AND HIGHER-FORM THEORIES
WAL A, .. )=ACR27 Dy (xy %5, .. L), we get theK
equations: Maxwell’s electromagnetism is governed by the action
2(D—1) ~2(D-1) 1(D-1) _ 1
pa(@QIPYQF, )P V=lad. (79 s=-7 f g 2F#F,,d0r + f g"20#A,d%r. (8.0

All our results in the previous sections can be carried
through mutatis mutandigo this, more general, case. The It describes the electromagnetic figtd,,=A, ,—A,, ,, de-
virial integral, which controls the change in system energyived from the vector potentiah,, , in the presence of con-

under dilatations, can now be shown to be given by served currents)*. The theory is gauge invariant, and is
conformally invariant in  four dimensions only
VEJ S ot Vedor (F*'=F ,59**gP", andJ*=g~"4*, where the vector den-
5 Pal= ¥V @a sity j# contains only matter degrees of freedom, but not the

metric). In a vein similar to that in our treatment of the scalar

D-1 _ _ _ case we can construct nonlinear, Cl generalizations for
_ 2(D—1) ~2/(D-1) 2/(D—1) )
2 £@Q1 Q2 »oe QK ). (7.9 D>4: take the field action to be
Using the homogeneity off, Eg. (7.2, by which :_f 12 D
L(X1, ... Xk)=(2/D)Z Xapa, and with Eq.(7.5), we can S 9 LRy 9,)d7T, (8.2

also write ) ]
where £ is homogeneous of degredD/2 in F:

D-1 L(7F ,,.9,,)=7"2C(F,,.9,,) (and, of course, is a coor-
V= T; |9al Q2P (77 dinate scalar It is Cl because multiplyingy,,, by A(r) in
L is tantamount to multiplyind=,,, by A"X(r) (every two
This expression fol is to replaceVp(q) in all our results IO"‘V’er case '”d'fgf’z irF,,, must be contracted using one
(remember that they,’s and Q,'s are charges of different 9"")- A fac“ﬂ;‘ is then pulled out ofC to cancel the
types of the same boglyFor example, the powerg;; ap- factor fromg™“. In D>4 dimensions we may take
pearing in the two- and three-body energy functions and de-

puv\D/4
fined in Eq.(5.3) are now given by Lor(FuFE 7 83
D—2 which gives a Cl, vector theory when coupled to the currents
= A2(D—1) — iy2(D-1) as above, but there are others. For example, in eight dimen-
Bi {£@QF°7Y, . )= L(QY*P7Y, ) s above, but th hers. F le, in eight di
2 sions
—L((QYZP~Y, . )}, (7.8 LoxF , FoPF 5 F 7o (8.9)
whereQl,, a=1, ... K, are the “asymptotic” charges for is such a theory.
the point bodyi, and Qa are those for the two bodigsj More generally, we have linear, gauge-invariant, Cl theo-
taken together, i.e., as calculated from E@.5 with the riesin everD dimensions involving an antisymmetric-tensor
chargesg,=q,+d.- gauge potential of rankk=D/2—1 (an n-form potentia),

As a special case, assume that the theory is invariant Ud\al ,,,,, ap The field tensoH o _— is the totally anti-
der rotations in the internal space afs’, i.e., under symmetrized derivative oA, and the current density is also
¢a— ¢a=O0apey, Where O is an orthogonal matrixthe  an n-form, in analogy with the Maxwellian case. The field
charges are then rotated by the same matrix, leavingagrangian isCocHa1 He1 - “n+1 and the interac-
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tion Lagrangian i\, ., J“% " In dimensions higher ACKNOWLEDGMENTS
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“(Hay, ., H n+1) . There is no known the manuscript.

linear, Cl generalization iD>2(n+1)(see, e.g.[11]).

Specializing now to flat spaces, | find that, as in the scalar
case, the effect of rescaling on the energy of some current
distribution is given by

APPENDIX: SOME MORE EXAMPLES
OF FORCE CALCULATIONS

The forces on the charges can also be calculated for sym-
E,—E=VIn\, (8.5 metric configurations of the following type: start with the
symmetric configuration described in Sec. V D, with an even
whereE, is the energy of the rescaled current distribution.number of sitesn. Put the charge at the center to 0. Place an
Again, V can be written as a surface integral. For examplegequal number of positive and negative chargeg at the
for the vector-potential case, where the rescaled current desites in such a way that all charges of the same sign are
sity is A ~P~1J#(r/N), we have equivalent: every two charges of the same sign can be inter-
changed by a point symmetry that does not mix charges of a
different sign. The corners of a-3D rectangular box, for
«BoE | (8.6 example, can be decorated in three inequivalent ways that
' satisfy the above. The vertices of a perfeot polygon can

This can be shown to vanish for configurations with spatially®® decorated in two ways: alternating charges, and in a two-
bounded currentébounded in space and time in higH2r- plusses—two-minuses pattern. Here again the forces on all

Minkowski spaces We do not have the appropriate ana- Charges, positive as negative, are equivalean be trans-
logues of point charges in the scalar case, with fibitdor formed t(_) each other by elements of the full, site point group
which to calculate and manipulatd-point energies. The ): Again, F-r takes the same value for all the charges.
situation is akin to having, in the scalar case, a system of'SiNg expressiori4.4) we get

point bodies of null charge but a finite higher multipole. As

explained in Sec. IV, our treatment of point-charge systems F-r=Vp(q). (A1)
does not apply to such systems.

We can still employ the CI to create new solutions of the A charge configuration of the above description results
nonlinear theory from other known solutions. For example when we apply the method of images to the problem of a
the vector potentiah,, = (1/2)B,,r“, with B,,, constant and chargeq in a region bounded by two intersecting, grounded,
antisymmetric, gives a constant fiefd,,=B,,,, and is thus (D —1)-dimensional hyperplanes. When the angle between
a vacuum solution of all the above vector theorieDirdi-  the hyperplanes i&= 7/m, the field in the region bounded
mensions. Inversion at the origin, under which by the planes is the same as that of a system of images. This
AM(r)—>r*2AM(r/r2) (A, is of dimension one in these theo- hasm pairs of chargest q arranged alternately on the ver-
ries) givesA,=(1/2)B,,,,r°r 4, which must them also be a tices of a polygon in a configuration as abdttee polygon is
solution. not perfect but has edges of alternating lengtiEguation
(A1) thus gives the radial force on the charge; it is a special
case of Eq(5.11).

Now an example of the use of the constrdirt0, where

It was pointed out to me by David Kutas¢private com- | is defined by Eq(4.14). Consider a planar, perfect polygon
munication that our results for the classical field theory Of n equal chargeq (a uniform ring in the limith— o), and
evoke, and might well be related to, results known to hold in@ charge—ng on the symmetry axis of the polygon, a dis-
conformal field theory. Perhaps there is such a conformalance/” from the origin at the polygon’s center. We want the
QFT whose classical limit is our theory. Comparing with theforce F on the large chargavhich acts along the axisand
definition of a conformal QFT as given, e.g. [(t2], to make the forcef on the small charges. Froh=0 we have
such a connection we will have to identify the so-termed

Y= f dO',,( r'C—2rBA

IX. DISCUSSION

“quasiprimary” fields of the QFT withe'd9¥("), where ¢(r) 2Vp(nq)/
is now a quantum field. ThM-point-charge energy function F=- Zy /7 (A2)

is the classical limit of the correlation function of these qua-

siprimary fields wherer is the radius of the polygon. The axial component of

the force on the small charges-isF/n, and the radial com-

E(ry, ... ry)=In[(eetrn . elinern)] - (9.0) ponentf, is gotten fromv=0:

and the constraints | found such @4) and (4.12 are the 1
Ward identities for the correlator. What | then proved f.=—r =Y Vs(q)+ =Vp(nQ)
amounts to showing that th@nomalous dimension of the n
operatore'd¢(" is V(q).

In the vector- and higher-form potential case we canno(F andf, are positive when towards the centeBince this
identify such an infinite set of “quasiprimary” fields. configuration is obtained by inversion from one in which the

r’+ /2|

2 /2
(A3)
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large charge is at the center of the polygon, the above resultsansforms it into a line with charge density
also follow by applying the force-transformation formula Eq. p(x) = po[ 1+ (x/A)2] "1, and the point charge at the center
(4.19 to the results of the symmetric case. Inversion about @an be moved to a point at an arbitrary distance in the sym-
point placed on a uniformly charged riigmit of a polygonn ~ metry plane of the wire.
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