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Nonlinear conformally invariant generalization of the Poisson equation toD>2 dimensions
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Department of Condensed-Matter Physics, Weizmann Institute, Rehovot 76100, Israel

~Received 01 April 1997!

I propound a nonlinear generalization of the scalar-field Poisson equation of the form@(w ,
iw ,i)

D/221w ;
k# ;k

}r, in curvedD-dimensional space. It is derivable from the Lagrangian densityLD5L f
D2Arw, with L f

D

}2(w ,
iw ,i)

D/2, andr the distribution of sources. Specializing to Euclidean spaces, where the field equation is
“•(u“wuD22

“w)}r, I find that L f
D is the only conformally invariant~CI! Lagrangian inD dimensions,

containing only first derivatives ofw, beside the free Lagrangian (“w)2, which underlies the Laplace equation.
Whenw is coupled to the sources in the above manner,LD is left as the only CI Lagrangian. The symmetry is
one’s only recourse in solving this nonlinear theory for some nontrivial configurations. Systems comprising
N point charges are special and afford further application of the symmetry. In spite of the CI, the energy
function for such a system is not invariant under conformal transformations of the charges’ positions. The
anomalous transformation properties of the energy stem from effects of the self-energies of the charges. It
follows from these that the forcesFi on the chargesqi at positionsr i must satisfy certain constraints beside the
vanishing of the net force and net moment: for example,( ir i•Fi must equal some given function of the
charges. The constraints total (D11)(D12)/2, which tallies with the dimension of the conformal group in
D dimensions. Among other things I use all these to derive exact expressions for the following quantities:~1!
The general two-point-charge force.~2! The full potential field for two opposite charges6q. ~3! The energy
function and the forces in any three-body configuration with zero total charge.~4! The few-body force for some
special configurations.~5! The virial theorem for an arbitrary, bound, many-particle system relating the time-
average kinetic energy to the particle charges. I also discuss briefly multiscalar theories, theories with higher
derivatives, and vector- and higher-form-potential theories.@S1063-651X~97!14007-7#

PACS number~s!: 41.20.Cv, 03.50.2z, 11.25.Hf
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I. INTRODUCTION

It is a well-known and well-used fact that the Poiss
equation,Dw}r, for the potentialw produced by source
r, describes a conformally invariant~CI! theory in two di-
mensions: It is invariant under the angle-preserving coo
nate transformations. In all dimensions it is linear in the fie
w, and thus describes a ‘‘free’’~non-self-interacting! field.
Many of the special features of theD52 theory stem from
its linearity, but many are underpinned by the conformal
variance. The Poisson equation inD.2 dimensions is not CI
~while the Laplace equation is; see Sec. II B!.

The Poisson equation describes many physical probl
in linear media such as electrostatics, magnetostatics, ste
state diffusion, and other potential flows in the presence
sources and sinks, and, of course, Newtonian gravity. It
be generalized to

“•@m~ u“wu!“w#}r, ~1.1!

to describe, for example, nonlinear media with a respo
coefficient~dielectric constant, permeability, diffusion coe
ficient, etc.! that is a function of the field strength. An equ
tion of this type, with different forms ofm(x), has been
studied in different contexts. For example, as an effecti
action approximation to Abelianized QCD@1#, as a modifi-
cation of Newtonian gravity to replace the dark-matter h
pothesis for galactic systems@2,3#, and in the context of
nonlinear composite media@4#. Some of the general prope
ties of such theories are summarized and extended in@5#.
561063-651X/97/56~1!/1148~12!/$10.00
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Equation~1.1! might serve as a model for many other no
linear phenomena, such as electrodynamics in very str
fields.

Here I point out that with the special choice ofm(x)
}xD22 the theory is a natural generalization of the~linear!
two-dimensional Poisson theory. The resulting nonline
theory is unique in certain regards. Foremost is its conform
invariance. This enables one to say much about the the
and its solutions—much beyond what is possible for the g
eral case. The theory seems to be the only one derivable f
a CI action that contains only first derivatives of the pote
tial, with the sourcer coupled directly to the potential, i.e
with an interaction Lagrangian of the formr f (w).

In the modified dynamics discussed as an alternative
dark matter, phenomenology requires just this CI behavio
three dimensions in the limit of very smallu“wu ~see@2,3#!.
Our results here apply then in the large-distance limit of t
theory.

In material media, nonlinearities of the response coe
cient appear at high values ofu“wu. Our results might then
apply in the short-distance limit. So, for example, our resu
for point charges will be valid when charges are very n
each other, and those for the fields at short distances from
sources.

The present theory constitutes an instance of a hig
nonlinear theory that can be solved for nontrivial configu
tions due to the symmetry.

I shall present two types of results: one concerns soluti
for the potential field for various charge distributions o
tained by conformal transformations from highly symmet
1148 © 1997 The American Physical Society
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56 1149NONLINEAR CONFORMALLY INVARIANT . . .
ones; this I do in Sec. III, after discussing some gene
properties of the theory in Sec. II.

The other type of result concerns systems of po
charges. The dynamics of these is governed by an en
function that depends on the charges and their position
turns out that while the theory is invariant under conform
transformations, the energy—surprisingly perhaps—is
invariant under a conformal transformation of the positio
of the point charges. This can be seen already in the t
dimensional case, which is exactly solvable, where the
ergy of a system of chargesqi at positions r i is
E5( i5” jqiqj lnur i2r j u. Under a dilatationr i→lr i we have
E→E1 lnl( i5” jqiqj5E1(1/2)lnl@(( iqi)

a2( iqi
a#, with

a52. In theD-dimensional, nonlinear case we do not,
general, have a closed expression for the energy. Still,
shall see that the energy transforms under dilatations
E→E1K lnl, with K a function of the charges of the sam
form, with a value of the powera that depends onD. The
nontrivial term in the transformation law comes from t
behavior of the self-energies of the charges under dilatat
including the fact that the self-energy of a charge is logar
mic in its size scale. All this is rather transparent in the line
two-dimensional case. There is also an appropriate trans
mation law of the energy under inversions—the other c
formal transformations~and of course, the energy is invaria
under translations and rotations, which do not affect the s
energies of charges!. I discuss all of this in Sec. IV. Some o
the applications to calculating energies and forces are
cussed in Sec. V. In Sec. VI, I discuss other field actions
w, and demonstrate the uniqueness ofLD as a CI Lagrangian
In Sec. VII, I discuss multipotential theories. In Sec. VIII
generalize briefly to nonlinear, CI extensions of Maxwelli
electrodynamics inD.4 dimensions. In the last section
make brief comments on possible connections with quan
field theory.

II. GENERAL PROPERTIES

Via the equation

“•$@~“w!2#D/221
“w%5aDGr ~2.1!

a charge distributionr(r ) in D-dimensional, Euclidean spac
gives rise to a potentialw(r ). This field equation is derivable
from the action

SD5Si
D1Sf

D[2E rwdDr2
1

DaDG
E @~“w!2#D/2dDr .

~2.2!

Here,Sf
D is the field action,Si

D is the interaction action,G is
a coupling constant, andaD52(p)D/2/G(D/2) is the
D-dimensional solid angle, introduced here for convenien
For G.0, like charges attract, as in gravity; forG,0 they
repel each other, as in electrostatics. The field equation h
unique solution in a volumeV bounded byS when either
w or the normal component of@(“w)2#D/221

“w are dictated
on S ~see, e.g.,@3,5#!.

Two integral relations satisfied by solutions of the fie
equation were derived in@5#. The first applies for our class o
theories when the total charge vanishes; it then tells us
l
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aDG
E @~“w!2#D/2dDr52E rwdDr . ~2.3!

The second relation is an explicit expression for the vir
integralV:

V[E rr•“wdDr5~dG!21uGQud[VD~Q! ~2.4!

@d[D/(D21)#, which follows by writing V as a surface
integral at infinity. The virial—which is shown below to con
trol the response of the configuration’s energy to rescalin
can then be written in terms of only the total charge of t
system.

While I shall work in Euclidean space with its specifi
conformal transformations, it is useful to formulate the pro
lem for curved space. The covariant form of the action is

SD52E g1/2rwdDr2
1

DaDG
E g1/2~gi jw ,iw , j !

D/2dDr ,

~2.5!

giving rise to the field equation

@~gi jw ,iw , j !
D/221gkmw ,k# ;m5aDGr. ~2.6!

Above, gi j is the metric,gi j its inverse,g5udet(gi j )u, and
summation over repeated indices is understood everywh
The densityr is defined so as to be a coordinate scalar:
charge within a volumeV is *Vg

1/2rdDr . So, for example,
for a system of point chargesqi at r i ,

r~r !5g21/2(
i
qid

D~r2r i !. ~2.7!

Using usual derivatives instead of covariant ones Eq.~2.6!
reads

g21/2@g1/2~gi jw ,iw , j !
D/221gkmw ,k# ,m5aDGr. ~2.8!

The field stress tensor is defined as the functional deriva
of the field action with respect to the metric; i.e., under
small changedgi j in the metric

dSf
D5

1

2E g1/2dgi jPi j dDr , ~2.9!

giving

Pi j52
1

DaDG
~w ,

kw ,k!
D/2S gi j2D

w ,
iw ,

j

w ,
mw ,m

D , ~2.10!

which has a vanishing trace.~The metric does not appear i
the interaction part—becauseg1/2r depends only on the
charges degrees of freedom—which, thus, does not con
ute toP.! The tracelessness results from the conformal
variance of the actionSf

D , as is well known~see below!. For
the Euclidean case the stress tensor becomes

PJ52~DaDG!21u“wuD~12Dn^n!, ~2.11!

with n5“w/u“wu.
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1150 56MORDEHAI MILGROM
In this flat case, the stress tensor gives the force on
volumeV, bounded by the surfaceS on whichr50 as

F[2E
V
r“wdDr52E

S
PJ–ds. ~2.12!

~Compare with the expression of the force as a surface i
gral in @2#.!

A. Conformal coordinate transformations

The crux of this paper is that the above theory is invari
under conformal coordinate transformations
D-dimensional space. These are the angle-preserving tr
formationsr→R, for which the metric transforms as

gi j→
]r k

]Ri gkm
]rm

]Rj 5l2~r !gi j , ~2.13!

corresponding to local rescaling of distances. The Jaco
determinant of the transformation is thu
J5u]R/]r u5l2D(r ).

In a flat ~Euclidean! (D.2) dimensional space the grou
of conformal coordinate transformations comprises the ri
transformations~translations, rotations, and reflections! un-
der which the metric does not change, dilatations~rescaling!
r→l21r , with a constantl, for whichgi j5d i j→l2d i j , and
inversions. Under an inversion about a sphere of radiua
centered at an arbitrary pointr0 a pointr is transformed to a
pointR on the same ray issuing fromr0, with the geometric
mean of the distances ofr andR from r0 beinga. Explicitly,

r→R5r01
a2

ur2r0u2
~r2r0!. ~2.14!

The Euclidean metricd i j then transforms as

d i j→Jik
21dkmJjm

215
a4

uR2r0u4
d i j5

ur2r0u4

a4
d i j , ~2.15!

where

Ji j5
]Ri

]r j
5

a2

ur2r0u2
~d i j22ninj !. ~2.16!

Here,n is a unit vector in the direction ofr2r0. The matrix
in brackets has eigenvalues 1 (D21 degenerate! and 21
~nondegenerate!. The determinant ofJi j , in absolute value,
is thus

J5
a2D

ur2r0u2D
5

uR2r0u2D

a2D
. ~2.17!

All conformal transformations take spheres into spheres~hy-
perplanes included as spheres of infinite radius!.

Since the scalar potential transforms asw(r )→ŵ(R)
5w„r (R)…, we have “ rw→“Rw@r (R)#5(]r /]R)“ rw,
from which it follows that

~“Rŵ !25
a4

uR2r0u4
~“ rw!2. ~2.18!
ny
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d

It is customary to use, instead of pure inversions, trans
mations of the formPA5I 0T(A)I 0, whereT(A) is a trans-
lation by a vectorA, and I 0 is the inversion at the origin
about a sphere of unit length. These have certain advanta
they are connected continuously to unity, and they bring
properties of the conformal group into better relief. I pref
however, to use pure inversions in what follows, as they
easier to handle: they are self-inverse, and have a sim
transformation Jacobian.

B. Conformal invariance of the theory

If r→R is a conformal coordinate transformation, our a
tion and the field equation are invariant under replacemen
w(r ) by w„r (R)…, of r(r ) by J21r„r (R)…, and of the metric
gi j (r ) by gi j „r (R)… ~anddDr by dDR in the action!. This can
be checked by direct substitution, but is easier to see as
lows: in a general metric space, a theory is conformally
variant if its action is invariant under replacement, eve
where in the action, ofgi j by z2(r )gi j ~and thus ofgi j by
z22gi j , and ofg by z2Dg), and ofr by z2Dr @because of the
factorg21/2 in the definition ofr—see Eq.~2.7!# It is evident
from expression~2.5! for the action, or from the field equa
tion ~2.8!, that ours is indeed a conformal theory by th
definition. This implies conformal invariance in the abo
sense, evident by applying first a conformal coordinate tra
formation, under whichw(r )→w„r (R)…, r(r )→r„r (R)…,
andgi j (r )→J22/Dgi j „r (R)… @see Eq.~2.13!#. The action, be-
ing a coordinate scalar, is invariant. Now transform the m
ric back by multiplying it by the conformal factorz25J2/D,
andr by z2D. The action remains invariant by virtue of it
CI. The net result is that the action is invariant under t
transformation described at the head of this subsection.

It follows from this that ifw(r ) solves the field equation
for the sourcer(r ) and metricgi j (r ), then ŵ(R)5w„r (R)…
solves it for the sourcer̂(R)5J21(r )r„r (R)…, with the same
metric gi j „r (R)…. Clearly, equipotential surfaces are tran
formed into equipotential surfaces. Also, field lines go
field lines, because they are perpendicular to equipoten
surfaces and angles are preserved in the transforma
Charges are preserved in the transformation; i.e., the t
charge in a certain volume is the same as the transfor
charge in the image of that volume.

The tracelesness of the stress tensor follows by employ
Eq. ~2.9! with dSf

D50 for dgi j5e(r )gi j , with e an arbitrary
~infinitesimal! function.

The application of such conformal invariance is stand
in the linear, two-dimensional case~in electrostatics, in
potential-flow problems, etc.!. In D dimensions such an ap
plication has special value because the symmetry is our o
recourse in solving some of the problems in this stron
nonlinear theory, as I do in Secs. III–V.

The covariant Laplace~free! action,*g1/2gi jw ,iw , jd
Dr , is

not CI in the above sense, but can be made so by addin
the above action a term proportional toRw, with R the scalar
curvature, and takingw to have nonzero dimension, so that
transforms asw→l2(D/221)w ~see e.g.,@6#!. The Euclidean
Laplace theory thus becomes CI withw of dimension
D/221 ~as the term with the curvature vanishes!, but then
the CI of the interaction term*g1/2rw is lost. What is special
about our theory, and what leads to the applications below
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56 1151NONLINEAR CONFORMALLY INVARIANT . . .
the fact that it is a CI theory in the presence of sources.
Hereafter I confine myself to the Euclidean case.

curved spaces that are conformally flat, such as maxim
symmetric spaces, conformal invariance implies the e
tence of coordinates in which the theory takes the Euclid
form, with gi j replaced byd i j everywhere.

C. Asymptotic behavior of the potential

If the sourcesr are contained within a finite volume, an
sum up to a total chargeQÞ0, the field becomes radial a
infinity, and, applying Gauss’s theorem to the field equat
for a sphere of a large radius,r , we find asymptotically

“w's~QG!uGQu1/~D21!r21nr . ~2.19!

Here s(x)5sgn(x), and nr is an out-pointing, radial unit
vector. The potential is then logarithmic for any dimensio
WhenQ50, the asymptotic behavior ofw is determined by
higher multipoles. Typically, a dipole potential dominat
asymptotically, and has the formw}z/r 2 ~see below! with
z the axis along the dipole. Outside a spherical distribution
zero total charge the field vanishes.

D. Scaling properties

The field equation enjoys a two-parameter family of sc
ing invariances: Ifw(r ) solves the equation for a sourc
r(r ), then, for any two constants a and b,
ŵ(r )[a21ua/budw(br ) solves it for r̂(r )5ar(br ), where
d[D/(D21). WhenbD5a.0, so that the total charge re
mains the same, the scaled potential isŵ(r )5w(br ).

It follows then that the potential, the electric field, th
forces, etc. scale simply with charge: ifr→ar, then
w→s(a)uau1/(D21)w, and forces~which scale likeq“w)
F→uaudF. These quantities also scale with system size.

III. EXACT SOLUTIONS FOR THE FIELD

Only few charge configurations with exact solutions a
known for the general case with an arbitrary form ofm(x) in
Eq. ~1.1! @5#. In particular, there is a closed-form solution f
any configuration with one of theD one-dimensional sym
metries: plane-parallel, cylindrical, . . . , spherical: by apply-
ing Gauss’s theorem we get for the present theory

dw

dR
}@q~R!#1/~D21!R2s/~D21!, ~3.1!

whereR is the only coordinate on whichw depends,q is the
accumulated charge, ands50 for the plane-parallel case
s51 for the cylindrical case, etc. For a spherical syst
s5D21, and we have

dw

dr
5

@Q~r !#1/~D21!

r
, ~3.2!

whereQ(r ) is the accumulated charge at spherical radiur
~here and in the rest of the section I useG51). In the plane-
parallel case
ly
-
n

n

.

f

-

dw

dz
5@aDS~z!/2#1/~D21!, ~3.3!

whereS(z) is the total surface density to the left~small-z) of
z minus that to its right.

These solutions, and others, may be used to generate
ones by applying conformal transformations to the cor
sponding charge configuration. Some examples follow.

A. Two opposite point charges6q at r1 and r2

Start with a point chargeq.0 at r1 and a spherical shel
evenly charged with charge2q, centered atr1, and having a
very large radius~infinite in the limit!. Upon inversion about
a sphere of radiusa5ur12r2u centered atr2 the large spheri-
cal shell is transformed into a point charge2q at r2, and the
chargeq stays atr1. The potential for the original, spheri
cally symmetric system isw(r )5q1/(D21)lnur2r1u inside the
spherical shell, andw50 outside. It transforms into

w~r !5q1/~D21!ln
ur2r1u
ur2r2u

~3.4!

~after subtraction of the constantq1/(D21)lnur22r1u); this ap-
plies everywhere. Interestingly, this potential is just the s
of the potentials of the two individual charges. This happe
to be the case only for two opposite charges. It holds neit
for two charges that are not opposite, nor for more then t
charges.

B. The pure-dipole field

Asymptotically, atr@l , where l is the dipole separa
tion, the potential in Eq.~3.4! becomes

w'2q1/~D21!l
z

r 2
, ~3.5!

wherez is the dipole axis~positive charge to the positive-z
side!. This is the potential for a pure dipole of streng
ql D21. It describes the field everywhere in the limitl →0
with ql (D21) constant.~For D.2, a standard dipole with
l →0 andql finite does not contribute to the dipole field
due to self-screening effects.! The pure dipole potential is a
vacuum solution of the field equation that is obtained fro
another vacuum solution: a constant-gradient field; the la
has the potentialw}z, which transforms intoz/r 2.

The dipole field has a field strength,u“wu}r22, that de-
pends only onr—not on the angular coordinates. This is
well-noticed property of the dipole field in two dimension
Here it follows directly from the transformation law~2.18!
for u“wu, and the fact that the dipole field is obtained b
inversion from a constant-gradient field.

For a bounded density distribution of a vanishing to
charge the asymptotic behavior of the field is, generica
dominated by a dipole fieldAz/r 2. I have not been able to
expressA as a functional of the density distribution.

C. Point charge in the presence of a grounded sphere

If, in the above example, we take the charged spher
shell to have a finite radius, we end up with a point cha
q in the presence of a grounded sphere~as the potential on
the original sphere vanishes!. By a proper choice of the in-
version radius and center, the image point charge falls ins
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1152 56MORDEHAI MILGROM
or outside, the image sphere. In the first case the pote
inside the sphere is that of two opposite charges, and v
ishes outside; the tables are turned when the charge
outside the sphere. The charge distribution on the groun
sphere is then easily determined.

D. Two oppositely charged spheres

More generally, starting from two oppositely charg
(6q) concentric spheres~for which the potential is constan
in the innermost and in the outermost regions, and
q1/(D21)lnr in between! we get the potential field of two
oppositely charged, equipotential spheres of any size, e
nested or detached. When the spheres are nested, the p
tial in the inner and outer parts is still constant; in betwee
is of the form~3.4!. When the spheres are detached the
tential is constant inside the spheres, and is of the form~3.4!
outside.

Starting with two parallel hyperplanes charged with
constant surface density6S ~between which“w is con-
stant!, and inverting about a point half-way between t
planes, we obtain two oppositely charged, tangent sphe
The potential vanishes inside the spheres; outside we hav
exact dipole potential. The charge distribution on ea
sphere—straightforwardly calculated—diverges at the ori
and together the charges give a dipole of finite strength.

E. Some general comments on potential fields

Since equipotential surfaces remain so when transform
and since spheres go to spheres, the equipotential surfac
all the above examples are spheres~all tangent in the case o
a point dipole!. The field lines are all circles, being images
circles or straight lines. For example, for a finite-separat
dipole the field lines are all the circles going through the t
charges.

There are constraints on the field that can be dedu
even when the full field cannot be calculated. As an exam
consider a charge distribution that lies on a circle~with
Q50). The field“w at any pointr must be tangent to an
sphere, of any dimension, containingr and the circle~be-
cause the sphere can be transformed into a plane by inve
about a point on it!. This provides some information on th
field of any three-point charge configuration, or on that o
square quadropole.

Other vacuum solutions of the field equation can
formed by starting from the known, exact solutions of on
dimensional symmetry~uniformly charged, one-dimensiona
wire, two-dimensional plane, etc.!. As an example take a
one-dimensional wire in three dimensions with a const
line densitys. Working in cylindrical coordinatesR,z we
write the potential asw5(8s)1/2R1/2. Inverting about a point
off the wire will give the field for certain ring-plus-point
charge configurations. Inverting about a point on the w
gives a configuration whose vacuum solution isw
}R1/2(R21z2)21/2. This corresponds to a charge dens
ŝ(z)}z22 ~and there appears an infinite opposite charge
the origin to compensate the infinite charge of the wire!.

For a general charge distribution, the field near an a
trary pointr , away from charges, is conformally related to
asymptotic field: invert about a very small sphere devoid
ial
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charges, and centered atr . All the charges are transforme
into the small sphere, and ther goes to infinity. The
asymptotic field of the new configuration is related to t
field nearr in the original configuration. If“w(r )Þ0, the
image asymptotic field is dominated by a dipole term. In
opposite example, look at the field near the midpoint b
tween two equal point charges, where“w50; the inverted
configuration is a quadropole, with a point charge22q
flanked by two symmetric chargesq; the asymptotic field
decreases faster than a dipole field. I have not been ab
determine this asymptotic behavior.

IV. MANY POINT CHARGES—GENERAL CONSTRAINTS

N-point-charge configurations—comprising bodies who
extent is much smaller than their separations—afford furt
application of the conformal symmetry. Take then a syst
made ofN point chargesq1 , . . . ,qN at r1 , . . . ,rN , respec-
tively. The information on the dynamics of the system
encapsuled in the energy functio
E(r1 , . . . ,rN ,q1 , . . .qn). The energy of a charge distribu
tion may be taken as2S. This converges at infinity only
when the total charge vanishes. We can still use it wh
QÞ0, provided only its changes under change of configu
tion are needed: only the energies of configurations with
same total charge can be compared~see@2#!. Changes inE
may be calculated as changes in2S. An infinitesimal change
dr in the charge distribution with no net change in the to
charge (*drdDr50) thus produces a change*wdrdDr in
the energy (dr also induces an increment ofw but the field
equation implies that this does not contribute to the inc
ment of the action!. The N-point-charge energy
E(r1 , . . . ,rN) ~suppressing theq variables!, is a special case
giving the relative energies of theN point charges in differ-
ent configurations: we are only interested in comparingE
values as the charges are moved rigidly to different po
tions. The energy also diverges~logarithmically! near point
charges, but these divergences can be subtracted as
energies. I, in fact, treat point charges as small but fin
bodies, and need not be concerned with such divergenc

The force on thei th charge is given by

Fi52
]E

]r i
. ~4.1!

I now derive an expression for a virial integral defined in E
~2.4! that involves only the positions of the charges and
net forces on them, but is oblivious to internal forces a
structure ~the above virial involves integration inside th
charges!. To this end consider the contributionVi of the i th
body occupying the small volumev i : Vi5*v irr•“wdDr .

Write for r within the body,r5r i1h, wherer i is the center
of charge,h is small and will be taken to 0 in the limit. We
can then write

Vi52r i•Fi1E
v i

rh•“wdDh, ~4.2!

whereFi is the net force on the body. The second term in E
~4.2! does not necessarily vanish in the limith→0, because
“w inside the body diverges in this limit. Let“w i(r ) be the
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field produced by the body when it is the only one prese
Write“w(r )5“w i(r )1“k(r ), wherek is the increment in
the potential due to the presence of the other bodies in
system.~Because of the nonlinearityk is not just the field
produced by all the other charges.! In the limit h→0, “w i
diverges likeuhu21 ~from the scaling properties! but“k re-
mains finite. Thus,*v irh•“kdDh vanishes in the limit, and

we are left with*v irh•“w id
Dh. This is just the virial de-

fined for the i th body when it is isolated. Thus, from Eq
~2.4!,

E
v i

rh•“wdDh→VD~qi ![~dG!21uGqi ud. ~4.3!

Putting all the above together we finally get an express
for the reduced virial

Vr[2(
i
r i•Fi5VD~Q!2(

i
VD~qi !

5~dG!21uGudS uQud2(
i

uqi udD . ~4.4!

Note that the limit of a point charge is gotten from a fin
charge distributionr(h) by taking the limit l→0 of
l2Dr(h/l); this has enabled us to take the limit
*v irh•“kdDh to 0. Pointlike bodies of finite, higher multi
poles ~dipole, quadropole, etc.! cannot be described in thi
way ~for example, for a point dipole*v irhd

Dh remains finite
in the limit!. Our ensuing results are not valid for such bo
ies.

A. Scaling behavior of the energy function

Expression~4.4! implies then thatEl[E(lr1 , . . . ,lrn)
satisfies

]El

]l
5(

i
l21@lr i•Fi~lr !#

5l21FVD~Q!2(
i
VD~qi !G . ~4.5!

Integrating overl between 1 andl we get an important
homogeneity property ofE(r1 , . . . ,rN):

E~lr1 , . . . ,lrN!

5E~r1 , . . . ,rN!1FVD~Q!2(
i
VD~qi !G lnl. ~4.6!

I shall now derive this transformation law ofE in a different
way, which illuminates better its origin, and which will be o
further use below. This is based on the invariance of
theory under space dilatations—a fact that also underlies
derivation of Eq.~4.4!.

Consider first the change in the energy of an arbitr
charge distribution r(r ) under a dilatation:
r(r )→rl(r )5l2Dr(r /l). In light of the scaling laws de-
scribed in Sec. II D,w(r )→wl(r )5w(r /l). Integrating
dE/dl5*wl(]rl /]l)dDr between 1 andl gives
t.

e

n

-

e
he

y

E~rl!2E~r!5 lnlE r~r !r•“wdDr5VD~Q!lnl,

~4.7!

whereQ is the total charge, and I have used Eq.~2.4! for the
virial integral. This is the result that underlies all our findin
below. It says that the virial integral is the single syste
parameter that determines the variations in energy un
scaling transformations.

What is the change inE when the charges are move
from positionsr i to positionslr i? This can be achieved in
two steps: first apply a space dilatation to the charge dis
bution. The centers of charge are then moved to the n
positions. But also, the charges themselves~taken as very
small but finite bodies! are dilated by the same factor; this
more than we want, as we need to move the chargesrigidly
to the new positions. After this first step we have from E
~4.7!

Ẽ~lr1 , . . . ,lrN!5E~r1 , . . . ,rN!1VD~Q!lnl, ~4.8!

where Ẽ is the energy of the dilated charges at their n
configuration.

In the second step we dilate each charge separately by
inverse factor to bring the configuration to the desired o
The energy change in the second step can be calculate
the limit of very small size for the charges. It is then the su
of changes due to separate dilation of the individual charg
This cannot be done when the bodies are not much sm
than their separations, and, as before, does not apply if
bodies have finite, higher multipoles. Using Eq.~4.7! again
for the individual charges yields the chang
DE52 lnl(iVD(qi). Putting the two together we get Eq
~4.6!. The nontrivial transformation properties of the ener
function underr i→lr i ~even whenQ50) thus have to do
with the transformation of the self-energies of the po
charges.

Invariance under translations implies thatE must be a
function of only differences of r i , such that
E(r i1a)5E(r i). The derivative of this with respect toa
gives

F[(
i
Fi50. ~4.9!

Similarly, invariance under rotations implies thatE depends
only on scalars, and that the total moment on the sys
must vanish:

MJ [(
i
r i ^Fi2Fi ^ r i50J. ~4.10!

B. Behavior of the energy under inversions

What does inversion invariance tell us about howE
changes under inversions, namely, when movingqi rigidly
from r i to Ri according to Eq.~2.14!? We saw above that i
the inversion is not to produce a new charge at the cente
must start with a total chargeQ50; whenQÞ0 we may
annul it by putting a charge2Q at infinity. Then, from con-
formal invariance, the energy~action! is conserved under an
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inversion transformation of the charge distribution. As in t
case of dilatations, such a transformation does not just m
the charges to their new positions, it also transforms th
inner structure, but how? When the charges are of very sm
size their shape change is determined by the first derivat
]R/]r @Eq. ~2.16! with r andR interchanged#. This describes
a reflection about a hyperplane perpendicular ton through
the body’s center, and a dilatation by a fact
a2/ur i2r0u25Ri0

2 /a2, with Ri05Ri2r0. As before, bringing
the charges back to their original size changes the total
ergy, which leads to

E~R1 , . . . ,RN!

5E~r1 , . . . ,rN!2(
i
VD~qi !lnSRi0

2

a2 D . ~4.11!

Again, the fact thatE is not invariant under inversion of th
positions results from the effect on the self-energy of
charges.

The derivatives of Eq.~4.11! with respect toa2 and to
r0, at fixedRi , give sum relations for the forces. The fir
gives Eq. ~4.4! for the reduced virial, again. The secon
gives the vector sum relation

2a2(
i
Fi1(

i
r i0
2 Fi22(

i
~r i0•Fi !r i0

12(
i
VD~qi !r i0

50. ~4.12!

Equation~4.12! holds for the forcesFi to which the point
charges are subject when atr i , for all values ofa and r0.
Separating the dependence onr and r0 this equation can be
written as

I2a2F1r0
2~122n^n!•F12Vr012MJ r050,

~4.13!

whereV[( i@r i•Fi2VD(qi)#, n5r0 /ur0u, and

I[(
i
r i
2Fi22(

i
~r i•Fi !r i12(

i
VD~qi !r i . ~4.14!

For Eq.~4.13! to hold for anyr0 anda we must have sepa
rately F50, MJ 50J, V50, and the new sum relationI50.
The number of such relations tota
D1D(D21)/2111D5(D11)(D12)/2—and tallies
with the dimension of the conformal group. The first thr
relations were derived above from transformation proper
of E under translations, rotations, and dilatations, resp
tively. Now we see that they all follow solely from the tran
formation properties under inversions. This need not be
prising: locally, all the former transformations can b
obtained from combinations of inversions. Any set of poin
in a finite volume can be translated, rotated, or dilated
using a succession of inversions alone.

How do the forces on the charges transform under inv
sion? If Fi andFi* are the forces in the old and new pos
ve
ir
all
es

n-

e

s
c-

r-

s
y

r-

tions, respectively, then, from Eq.~4.11!, and choosing the
origin at the inversion point (r050)

Fi*52
]E~R1 , . . . ,RN!

]Ri
5

]r i
]Ri

•Fi12VD~qi !
Ri

Ri
2 .

~4.15!

V. N-POINT CHARGE CONFIGURATIONS—
SOME APPLICATIONS

Energy functions and forces for certainN-point charge
configurations can be calculated with the use of the result
the previous section.

A. The two-body system

The forceF(q1 ,q2 ,l ) between two point chargesq1 and
q2, a distancel apart (F is positive for attraction! can be
obtained from expression~4.4! for the reduced virial: here
F152F25F, and the vanishing of the moment implies th
F points from one charge to the other, so thatVr5Fl , and
we can write

F5
s~G!

l
@VD~q11q2!2VD~q1!2VD~q2!#

5
s~G!

l
d21uGud21~ uq11q2ud2uq1ud2uq2ud! ~5.1!

@d[D/(D21)#. This result was derived in@7# for the three-
dimensional case in a roundabout manner.@ForD52 expres-
sion ~5.1! reduces to the standard two-dimensional line
medium resultF5Gq1q2 /l .# For example, for two equa
charges q15q25q, F52s(G)l 21d21uGud21uqud(2d21

21). For opposite charges, q152q25q,
F522s(G)l 21d21uGud21uqud, also to be gotten from the
force-transformation law~4.15! starting with one charge a
infinity, and henceF*50.

The energy function in the two-body case is

E~r1 ,r2 ,q1 ,q2!5b12lnur12r2u, ~5.2!

where

b i j[VD~qi1qj !2VD~qi !2VD~qj !. ~5.3!

B. The three-body system with vanishing total charge

Consider three chargesqi at r i , with q11q21q350. Per-
form an inversion with one of ther i ’s as center, sayr3. Then,
q3 is transformed to infinity, andq1,2 are transformed to
R1,2. The force onq1, say, can be calculated in the ne
configuration from the two-body force formula Eq.~5.1!.
From this the forceF1 in the original three-body configura
tion is calculated by employing the force-transformation la
Eq. ~4.15! to obtain

F15b12

r22r1
r 12
2 1b13

r32r1
r 13
2 . ~5.4!

~This could also be derived from the above constraints on
forcesF50, M50J, V50, I50.! Interestingly, the force
is the sum of the two forces that would have been exerted
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56 1155NONLINEAR CONFORMALLY INVARIANT . . .
q2 andq3 separately, the nonlinearity notwithstanding. In
grating Eq. ~5.4! over r1 we get the explicit form of the
three-body energy function~for the zero-total-charge case!:

E~r1 ,r2 ,r3!5 ln@r 12
b12r 13

b13r 23
b23#. ~5.5!

C. The virial theorem

I now derive the analogue of the standard virial theore
^Ek&52^Ep&/2, relating the mean kinetic energy and me
potential energy of anN-body system held together by New
tonian gravity in three dimensions. Consider a bound sys
made of any number of point chargesqi , of massesmi ,
moving under the sole influence of thew field they produce
~other forces may act inside each body to hold it togeth!.
The center-of-mass acceleration of each bodyr̈ i5Fi /mi ,
with theFi satisfying Eq.~4.4!. Now

Vr52(
i
r i•Fi52(

i
mir i• r̈ i52

1

2

d2

dt2F(i mir i
2G

1(
i
mi ṙ i

2. ~5.6!

The first term vanishes in the stationary case~or its long-time
average vanishes for a general bound system!; the second
term equals twice the kinetic energyEk5M ^V2&/2, where
M is the total mass of the system, and^V2& is the mean
square velocity. Together with Eq.~4.4! this finally gives the
desired virial theorem

2Ek5M ^V2&5VD~Q!2(
i
VD~qi !

5~dG!21uGudS uQud2(
i

uqi udD , ~5.7!

by which the mean-square velocity depends only on
charges. This is exact for a stationary system; for a gen
bound system the long-time average of the left-hand side
to be taken.

This relation has been used to estimate the mass of la
scale, cosmological, galaxy filaments, which are appro
mately two-dimensional Newtonian systems@8#. It has also
been used to determine the masses of roundish galaxie
the modified dynamics, from their observed velocity disp
sions, when typical accelerations in them are very low~see
@7,9# and references therein!. In these cases, whereqi are the
constituent masses, and whereN@1,(uqi ud can be neglected
as it is smaller thanuQu25M2 by a factor;N21/(D21). In
the limit N→`

^V2&5
D21

D
~GM!1/~D21!. ~5.8!

D. Symmetric configurations

The force on bodies in some symmetric configuratio
can be calculated from expression~4.4!: consider a configu-
ration comprising a chargeq0 at the center, andn equal
charges,q, at positionsr i that are equivalent with respect t
-

,

m

e
al
as

e-
i-

in
-

s

the center—equivalent in the sense that each of the po
r i can be interchanged with any other by an element of
symmetry group of the system,H: a rotation, a reflection
about the center, a reflection about some hyperplane thro
the center, or combinations thereof, that is also a symm
of the system. Examples are the corners of a rectang
hyperbox, the vertices of any perfect solid of dimensionD or
less ~such as a perfect polygon, any hypercube, etc.!, the
vertices of polygonal prisms of different types, etc. Clear
the q charges are then all at the same distance from
center, call itr . Also, they are subject to equivalent force
Fi ; to wit, each of theFi ’s can be transformed to any othe
by an element of the symmetry group. In particular, the
dial components of these forces (F•r ) i are all equal, becaus
scalars are invariant under the point group.~The force on the
charge at the center vanishes.! This common value can be
deduced from Eq.~4.4! ~the symmetry automatically ensure
thatF50, M50J, andI50):

F•r52
1

n
@VD~q01nq!2VD~q0!#1VD~q!. ~5.9!

When the forces are radial—as when the point are the ve
ces of a perfect solid—the full force is obtained since in t
caseF•r52Fr (F is positive whenF acts towards the cen
ter!.

In the limit n→`,nq→Q, Eq.~5.9! gives the force on the
elements of a spherical shell of any dimension smaller t
D ~e.g., a ring! having radiusr , total chargeQ, and a charge
q0 at its center. The force-per-unit-charge on the shell is

F5
1

Qr
@VD~q01Q!2VD~q0!#. ~5.10!

Additional results are described in Appendix A.

E. Point charges in the presence of conducting boundaries

When ~equipotential! bodies of infinite conductivity are
present, the full conformal symmetry enjoyed by t
N-charge problem is destroyed~the boundaries remain in
place when applying the transformation to the charges!. So,
for example, homogeneity is always lost, and the total fo
now does not vanish in general; rotational symmetry sb
an arbitrary center is lost, and so the total moment does
vanish, etc. Some symmetry may, however, be left, in wh
case the corresponding identities are still valid. If the
rangement of conductors is invariant under translations i
certain direction, the component of the total force on t
charges in this direction vanishes. If the conductors
spherically symmetric about some center, the total mom
on the charges with respect to this center vanishes, and s
An interesting example involves boundaries that are inv
ant to rescaling about a certain point~taken at the origin!.
This happens when for every pointr on the boundarylr is
also on the boundary for everyl>0—the boundary is an
arbitrary-cross-section cone~including a hyperplane, a cor
ner, etc.!. In this case, expression~4.4! for the reduced virial
holds with respect to the origin~but I50 does not!; Q now is
the total charge including that on the conductors. When
conductors are grounded they automatically take up a ch
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1156 56MORDEHAI MILGROM
that makesQ50. Thus, for example, the force on a sing
chargeq, in the presence of an arbitrary, grounded, co
conductor is always subject to a forceF, satisfying

F•r5VD~q!. ~5.11!

This can be extended to conductors in the shapes of disk
spherical caps, as they can be transformed into half plane
inversions.

VI. OTHER CONFORMAL ACTIONS?

Rotation invariance dictates that an action containing o
first derivatives ofw is a function of (“w)2, and scale in-
variance further requires that it be of the for
Sp}*@(“w)2#pdDr . By themselves, all such actions are i
variant under the scale transformatio
w(r )→ŵ(r )5law(lr ), with a5(D/2p)21, namely, with
w having conformal dimensiona. If it is to be fully CI, Sp

must also be invariant under inversion at the orig
w(r )→ŵ(r )5(a/r )2aw(a2r /r 2). This can be shown not to
be the case unless eitherp51 ~the linear case!, or p5D/2,
which gives our actionSf

D . To see this note that starting wit
w}r2(D22p)/(2p21), which is the only spherical vacuum so
lution of the theory~besidew5const), the correspondingŵ
is not a solution, unlessp51, D/2. Similarly, if we start
with w}z, which is a vacuum solution for allSp, the corre-
spondingŵ is not, unlessp51, D/2.

Field theory lore has it that scale-invariant theories tend
be CI, but this is not a theorem~see, e.g.,@10#, and references
therein!. The above nonlinear theories constitute count
examples.

For the interaction action to be invariant we needw to
transform according tow(r )→w„R(r )…, since rdDr is in-
variant; i.e.,w is then of conformal dimension zero. As e
plained in Sec. II B, the Poisson action inD.2 is not CI
because for the free action to be invariantw has to have
dimensionD/221. We are thus left withSD as the only CI
action containing only first derivatives in the field part.

Consider now actions with a field part containing high
derivatives written for curved space

S52E g1/2L~gi j ,Dw, . . . ,Dkw!dDr2E g1/2rwdDr .

~6.1!

The field LagrangianL depends on covariant derivatives
w: w ; i1

. . . ; im, 1<m<k ~collectively designatedDmw), and
is a coordinate scalar. Scale invariance alone is tantam
to the homogeneity requirement

L~gi j ,lDw, . . . ,lkDkw!5lDL~gi j ,Dw, . . . ,Dkw!.
~6.2!

This is because coordinate invariance dictates that every
rivative in L is contracted with another by onegi j . As w has
zero dimension, under dilatations,r→l21r , anmth covari-
ant derivative is multiplied bylm, which is the same as
multiplying gi j by l2, and conformal invariance tells us th
L(l2gi j , . . . )5lDL(gi j , . . . ).
c

or
by

y

:

o

r-

r

nt

e-

Consider, hereafter, the Euclidean version of the act
~wheregi j is put tod i j , andD to ]). As stated above, scal
invariance does not ensure full CI. The quadra
Lagrangians—leading to linear field equations—withw of
zero scaling dimensionL5wDD/2w ~for evenD) are CI. The
nonlinear actions withw of zero scaling dimensions ar
probably not. In fact, I have not been able to find any tha
~without having a general proof that none is!. For example, I
have shown that all the Lagrangians, in evenD dimensions,
of the form

L5@~“w!2#m~Dw!k, ~6.3!

with m5D/22k, and withk51 for D>4, k52 for D.4,
or k>3 for D>2k, which are scale invariant, are not CI.

The homogeneity condition~6.2! implies that the field
equation necessarily has a vacuum, spherically symme
solution of the formw5Alnr . The Euler-Lagrange equatio
can be written in the form] iJi5r, whereJi is a vector that
is a function of the first 2k21 derivatives ofw, with the
homogeneity property@easily derived from Eq.~6.2!#

Ji~l]w, . . . ,l2k21]2k21w!5lD21Ji~]w, . . . ,]2k21w!.
~6.4!

Whenw depends only on the radial coordinater , J has only
an r component, and, from Eq.~6.4!, for w5Alnr ,
Jr5r2(D21) j (A). Since in the spherical cas
] iJi5r2(D21)] r@r

D21Jr #, clearlyw5Alnr is a solution. The
coefficient A is determined via the Gauss theorem:j (A)
}Q, whereQ is the total charge at the center. IfL is homo-
geneous inw of degreeb, thenJ is homogeneous of degre
b21 in w, and then the coefficientA is given by A
}sgn(Q)uQu1/(b21).

The purely logarithmic potential outside a single spheri
body is, however, valid for only very specific density run
When the Lagrangian depends on derivatives up to thekth,
the generic, spherically symmetric, vacuum solution is ch
acterized by 2k constants, which are determined by the ex
density run in the central body. In general, the potential
verges at larger as a power inr . The notion of a point
charge is thus not useful as the external solution does
depend only on the total charge. We cannot even spea
‘‘the field of a point charge’’ as this is not well defined. Fo
example, the quadratic theory withw of zero dimensions,
with L}wDD/2w1Arw, with the field equationDD/2w}r,
hasD independent spherically symmetric vacuum solutio
of the formw5const,lnr ,r6a, with a52,4,, . . . ,D22.

VII. MULTIPOTENTIAL THEORIES

The above theory is straightforwardly extended to d
scribeK ~coupled! scalar potentials,wa , which couple to
K types of charges with densitiesra (a51, . . . ,K). The
action is

S52E (
a

rawad
Dr2

1

2aD
E L~x1 , . . . ,xK!dDr ,

~7.1!

with xa[(“wa)
2, andG51. Conformal invariance is now

equivalent to homogeneity ofL:



g
.

n

d

-

ie
e
rg

t

d

r

u

in

eld

ic

e
eld
its

-
is
y
-
the
ar
for

-

e

nts
en-

o-
or

o
ld

56 1157NONLINEAR CONFORMALLY INVARIANT . . .
L~lxa!5lD/2L~xa!. ~7.2!

~One could actually generalize further by takin
xab5“wa•“wb as variables, but I keep to the simpler form!
TheK field equations are

“•@ma~x1 , . . . !“wa#5aDra , ~7.3!

with ma5]L/]xa , 1<a<K. The spherical vacuum solutio
for a system with total chargesqa is

wa5s~qa!Qa
1/~D21!lnr , ~7.4!

with Qa>0, giving xa5(Qa)
2/(D21)r22; s(qa)Qa may be

viewed as the asymptotically observed charges. They are
termined from the actual charges,qa5*ra , as follows: In-
serting the above form ofwa in the Gauss theorem
ma(x1 , . . . )dwa /dr5qar

2(D21), and making use of the ho
mogeneity property of thema ~derived from that ofL):
m(lx1 ,lx2 , . . . )5l (D/221)ma(x1 ,x2 , . . . ), we get theK
equations:

ma„Q1
2/~D21! ,Q2

2/~D21! , . . . …Qa
1/~D21!5uqau. ~7.5!

All our results in the previous sections can be carr
throughmutatis mutandisto this, more general, case. Th
virial integral, which controls the change in system ene
under dilatations, can now be shown to be given by

V[E (
a

rar•“wad
Dr

5
D21

2
L„Q1

2/~D21! ,Q2
2/~D21! , . . . ,QK

2/~D21!
…. ~7.6!

Using the homogeneity ofL, Eq. ~7.2!, by which
L(x1 , . . . ,xK)5(2/D)(axama , and with Eq.~7.5!, we can
also write

V5
D21

D (
a

uqauQa
1/~D21! . ~7.7!

This expression forV is to replaceVD(q) in all our results
~remember that theqa’s andQa’s are charges of differen
types of the same body!. For example, the powersb i j ap-
pearing in the two- and three-body energy functions and
fined in Eq.~5.3! are now given by

b i j5
D22

2
$L„Q̂1

2/~D21! , . . . …2L„~Q1
i !2/~D21!, . . . …

2L„~Q1
j !2/~D21!, . . . …%, ~7.8!

whereQa
i , a51, . . . ,K, are the ‘‘asymptotic’’ charges fo

the point bodyi , and Q̂a are those for the two bodiesi , j
taken together, i.e., as calculated from Eq.~7.5! with the
chargesqa5qa

i 1qa
j .

As a special case, assume that the theory is invariant
der rotations in the internal space ofws’, i.e., under
wa→ŵa5Oabwb , where O is an orthogonal matrix~the
charges are then rotated by the same matrix, leav
e-

d

y

e-

n-

g

(arawa invariant!. This means thatL must be a function of
(axa , and the required homogeneity then dictates that

L5
2

DS (
a

xaD D/2 ~7.9!

~the constant in front is chosen to match the single-fi
case!.

Equation~7.5! can now be solved to give the asymptot
charges as

Qa5uqauD21q2~D22!, ~7.10!

where q[((aqa
2)1/2 is the root mean square over all th

charge types of a body. The virial now takes the single-fi
form, only with the system’s single charge replaced by
root mean square over all the charge types:V5VD(q).

VIII. VECTOR AND HIGHER-FORM THEORIES

Maxwell’s electromagnetism is governed by the action

S52
1

4E g1/2FmnFmnd
Dr1E g1/2JmAmd

Dr . ~8.1!

It describes the electromagnetic fieldFmn[An,m2Am,n , de-
rived from the vector potentialAm , in the presence of con
served currentsJm. The theory is gauge invariant, and
conformally invariant in four dimensions onl
(Fmn5Fabg

amgbn, andJm5g21/2j m, where the vector den
sity j m contains only matter degrees of freedom, but not
metric!. In a vein similar to that in our treatment of the scal
case we can construct nonlinear, CI generalizations
D.4: take the field action to be

Sf52E g1/2L~Fmn ,gmn!dDr , ~8.2!

where L is homogeneous of degreeD/2 in F:
L(hFmn ,gmn)5hD/2L(Fmn ,gmn) ~and, of course, is a coor
dinate scalar!. It is CI because multiplyinggmn by l(r ) in
L is tantamount to multiplyingFmn by l21(r ) ~every two
lower case indices inFmn must be contracted using on
gmn). A factor l2D/2 is then pulled out ofL to cancel the
factor fromg1/2. In D.4 dimensions we may take

L}~FmnF
mn!D/4, ~8.3!

which gives a CI, vector theory when coupled to the curre
as above, but there are others. For example, in eight dim
sions

L}FmaF
abFbgF

gm ~8.4!

is such a theory.
More generally, we have linear, gauge-invariant, CI the

ries in evenD dimensions involving an antisymmetric-tens
gauge potential of rankn5D/221 ~an n-form potential!,
Aa1 , . . . ,an

. The field tensorHa1 , . . . ,an11
is the totally anti-

symmetrized derivative ofA, and the current density is als
an n-form, in analogy with the Maxwellian case. The fie
Lagrangian isL}Ha1 , . . . ,an11

Ha1 , . . . ,an11, and the interac-
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tion Lagrangian isAa1 , . . . ,an
Ja1 , . . . ,an. In dimensions higher

than 2(n11) we get a CI theory by takingL(H) that is
homogeneous of degreeD/(n11) in H, e.g., L
}(Ha1 , . . . ,an11

Ha1 , . . . ,an11)D/2(n11). There is no known

linear, CI generalization inD.2(n11)~see, e.g.,@11#!.
Specializing now to flat spaces, I find that, as in the sca

case, the effect of rescaling on the energy of some cur
distribution is given by

El2E5V lnl, ~8.5!

whereEl is the energy of the rescaled current distributio
Again, V can be written as a surface integral. For examp
for the vector-potential case, where the rescaled current
sity is l2(D21)Jm(r /l), we have

V5E dsnS r nL22r bAa,b

]L
]Fn,a

D . ~8.6!

This can be shown to vanish for configurations with spatia
bounded currents~bounded in space and time in higher-D
Minkowski spaces!. We do not have the appropriate an
logues of point charges in the scalar case, with finiteV, for
which to calculate and manipulateN-point energies. The
situation is akin to having, in the scalar case, a system
point bodies of null charge but a finite higher multipole. A
explained in Sec. IV, our treatment of point-charge syste
does not apply to such systems.

We can still employ the CI to create new solutions of t
nonlinear theory from other known solutions. For examp
the vector potentialAm5(1/2)Bamr

a, with Bam constant and
antisymmetric, gives a constant fieldFmn5Bmn , and is thus
a vacuum solution of all the above vector theories inD di-
mensions. Inversion at the origin, under whi
Am(r )→r22Am(r /r

2) (Am is of dimension one in these theo
ries! gives Âm5(1/2)Bamr

ar24, which must them also be
solution.

IX. DISCUSSION

It was pointed out to me by David Kutasov~private com-
munication! that our results for the classical field theo
evoke, and might well be related to, results known to hold
conformal field theory. Perhaps there is such a confor
QFT whose classical limit is our theory. Comparing with t
definition of a conformal QFT as given, e.g., in@12#, to make
such a connection we will have to identify the so-term
‘‘quasiprimary’’ fields of the QFT witheiqw(r ), wherew(r )
is now a quantum field. TheN-point-charge energy function
is the classical limit of the correlation function of these qu
siprimary fields

E~r1 , . . . ,rN!5 ln@^eiq1w~r1! . . .eiqNw~rN!&#, ~9.1!

and the constraints I found such as~4.4! and ~4.12! are the
Ward identities for the correlator. What I then prove
amounts to showing that the~anomalous! dimension of the
operatoreiqw(r ) is VD(q).

In the vector- and higher-form potential case we can
identify such an infinite set of ‘‘quasiprimary’’ fields.
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APPENDIX: SOME MORE EXAMPLES
OF FORCE CALCULATIONS

The forces on the charges can also be calculated for s
metric configurations of the following type: start with th
symmetric configuration described in Sec. V D, with an ev
number of sites,n. Put the charge at the center to 0. Place
equal number of positive and negative charges6q at the
sites in such a way that all charges of the same sign
equivalent: every two charges of the same sign can be in
changed by a point symmetry that does not mix charges
different sign. The corners of a 32D rectangular box, for
example, can be decorated in three inequivalent ways
satisfy the above. The vertices of a perfect 4m polygon can
be decorated in two ways: alternating charges, and in a t
plusses–two-minuses pattern. Here again the forces on
charges, positive as negative, are equivalent~can be trans-
formed to each other by elements of the full, site point gro
H). Again, F•r takes the same value for all the charge
Using expression~4.4! we get

F•r5VD~q!. ~A1!

A charge configuration of the above description resu
when we apply the method of images to the problem o
chargeq in a region bounded by two intersecting, grounde
(D21)-dimensional hyperplanes. When the angle betw
the hyperplanes isa5p/m, the field in the region bounded
by the planes is the same as that of a system of images.
hasm pairs of charges6q arranged alternately on the ve
tices of a polygon in a configuration as above~the polygon is
not perfect but has edges of alternating lengths!. Equation
~A1! thus gives the radial force on the charge; it is a spe
case of Eq.~5.11!.

Now an example of the use of the constraintI50, where
I is defined by Eq.~4.14!. Consider a planar, perfect polygo
of n equal chargesq ~a uniform ring in the limitn→`), and
a charge2nq on the symmetry axis of the polygon, a di
tancel from the origin at the polygon’s center. We want th
forceF on the large charge~which acts along the axis!, and
the forcef on the small charges. FromI50 we have

F52
2VD~nq!l

r 21l 2 , ~A2!

wherer is the radius of the polygon. The axial component
the force on the small charges is2F/n, and the radial com-
ponentf r is gotten fromV50:

f r52r21FVD~q!1
1

n
VD~nq!

r 22l 2

r 21l 2G . ~A3!

(F and f r are positive when towards the center.! Since this
configuration is obtained by inversion from one in which t
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large charge is at the center of the polygon, the above res
also follow by applying the force-transformation formula E
~4.15! to the results of the symmetric case. Inversion abou
point placed on a uniformly charged ring~limit of a polygon!
lts
.
a

transforms it into a line with charge densit
r(x)5r0@11(x/A)2#21, and the point charge at the cent
can be moved to a point at an arbitrary distance in the s
metry plane of the wire.
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